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1 What is Category Theory?

“[Category theory] does not itself solve hard problems in topology or algebra. It clears
away tangled multitudes of individually trivial problems. It puts the hard problems in
clear relief and makes their solution possible.” – Colin McLarty

A category, in its full generality, is not much more than a generalization of a labeled directed multi-
graph – a class of objects and a class of arrows (also known as morphisms) between them. Category
theory is used in a variety of subfields of math both to unify certain “natural” definitions and for the
tools it can help develop. Its origins lie in mid-20th algebraic topology, but the subject has exploded
in the less than a century since its development.

In particular, they are used in homological and cohomological algebra, algebraic geometry, and al-
gebraic topology. They appear as knot invariants, abstract vector spaces, and more. They are also
used outside of pure math: in mathematical physics, biology, and (especially) computer science, where
categories provide a useful language for functional programming.

Sándor has often said that the most important distinction between different fields of math are the
types of functions that you consider – linear transformations, homeomorphisms, automorphisms, and
so on. I don’t think I quite understood what he meant until I began to learn category theory. The
maxim to remember is that ”an object is determined by its relationships to other objects” – succinctly,
”it’s all about the maps”.

2 Basic Definitions

Definition 2.1 (Categories). A category C is a class of objects Ob(C) and morphisms or arrows
Mor(C) satisfying the following requirements:

1. For each morphism f , there are objects dom(f) = A and cod(f) = B, called the domain and
codomain of f . In this case, we write f : A→ B

2. Given any two morphisms f : A→ B and g : B → C, there exists an morphism g ◦ f : A→ C,
called the composition of f and g.

3. Given any object A, there is an identity morphism 1A : A → A such that for any f : A → B,
f ◦ 1A = f = 1B ◦ f .

4. Morphism composition is associative: given any three morphisms f : A → B, g : B → C,
h : C → D, (f ◦ g) ◦ h = f ◦ (g ◦ h).

Definition 2.2 (Small and Locally Small). A category C is called small if both Ob(C) and Mor(C)
are sets. Otherwise, C is called large. Similarly, a category C is called locally small if for all objects
X,Y ∈ C, the collection HomC(X,Y ) of morphisms X → Y is a set (called a hom-set).

Definition 2.3 (Isomorphism of Objects). In any category C, an morphism f : A → B is called an
isomorphism if there is a morphism g : B → A such that f ◦ g = 1B and g ◦ f = 1A. In this case, f
and g are called inverses, g is denoted f−1, and we say A is isomorphic to B (denoted A ∼= B).

Following are some important examples of categories:

• Sets is the category of sets and functions between them.

• Setsfin is the category of finite sets and functions between them.

• Groups is the category of groups and group homomorphisms.

• Rings is the category of rings (with unity) and ring homomorphisms (which preserve 1)
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• Graphs is the category of graphs and graph homomorphisms.

• Vectk is the category of vector spaces over a field k and k-linear transformations.

• ModR is the category of modules over a ring R and R-module homomorphisms.

• Top is the category of topological spaces and continuous mappings.

One of the most important examples of a category is a poset (a partially ordered set). Here, the
objects of the poset category are simply the elements of the set, and the arrows f : x→ y correspond
to orderings x ≤ y. For example, Ordfin, the set of finite ordinals (specifically the von Neumann
ordinals) is naturally a category by the usual ordering.

It will also be helpful for us to define the following categories: 0 is the empty category (with no
objects and no morphisms), 1 is the category with one object and the identity morphism, and 2 is
the following category:

A BidA
f

idB

Finally, an individual group is itself a category with exactly one object, where all the morphisms are
isomorphisms. For a given group G, this category is called BG. For example, the category B{1}
(where {1} is the trivial group) is 1 and the category BV4 (where V4 is the Klein four-group) is:

Gab

1

b

a

Of course, you can figure out how the composition is defined.

Definition 2.4 (Opposite Category). The opposite category Cop of a category C is formed by simply
“reversing all the arrows”.

Definition 2.5 (Discrete Category). Let X be a class of objects. The discrete category Dis(X) is
the category formed using X for the class of objects and only adding the required identity morphisms
for each object O ∈ X.

Definition 2.6 (Arrow Category). The arrow category or morphism category C→ of a category C
has the morphisms of C as objects, and a morphism g from f : A → B to f ′ : A′ → B′ is a pair of
morphisms (g1, g2) in C such that g2 ◦ f = f ′ ◦ g1 – i.e. such that the following diagram commutes:

A A′

B B′

f

g1

f ′

g2

Definition 2.7 (Subcategory). A subcategory of a category C is a subclass Ob(D) ⊆ Ob(C) and a
subclass Mor(D) ⊆ Mor(C) such that any morphism in Mor(D) is between two objects in Ob(D).
For example, 0 is a subcategory of any category.

2.1 Types of Morphisms

Definition 2.8 (Monomorphisms). A morphism f : A → B is called a monomorphism if it is left-
cancellative – i.e. fg = fh⇒ g = h. In this case, we write f : A� B and say f is monic.

Definition 2.9 (Epimorphisms). An epimorphism if it is right-cancellative – i.e. gf = hf ⇒ g = h.
In this case, we write f : A� B and say f is epic.
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Definition 2.10 (Bimorphism). A morphism if called a bimorphism if it is both epic and monic.

Definition 2.11 (Retractions and Sections). A morphism is called a retraction if it has a left-inverse
and a section if it has a right-inverse. Note that a morphism which is both a retraction and a section
is an isomorphism.

Notice that in Sets, the monomorphisms are exactly the retractions (i.e. the injective functions)
and the epimorphisms are exactly the surjections (i.e. the surjective functions). Furthemore, the
bimorphisms correspond exactly to the isomorphisms (i.e. the bijections). However, this is not
generally the case: being an isomorphism is a strictly stronger condition than being a bimorphism.
Still, it inspires the following definition:

Definition 2.12 (Subobject). A subobject of an object X in C is a monomorphism m : M � X.

Proposition 1. All isomorphisms are bimorphisms (that is, they are monic and epic). More generally,
any retraction is monic and any section is epic. In contrast, not all bimorphisms are isomorphisms.

Proof. The first two parts of the proposition are trivial. To see an example of a bimorphism which
is not an isomorphism, consider the example of the inclusion Z ↪→ Q in the category Rings. This is
both a monomorphism and epimorphism, but not an isomorphism.

Definition 2.13 (Endomorphisms and Automorphisms). An endomorphism is a morphism f : A→ A
from an object to itself. If an endomorphism is also an isomorphism, then it is called an automorphism.
The class of endomorphisms of an object A is denoted End(A) and the class of automorphisms is
denoted Aut(A).

Definition 2.14 (Terminal, Initial, and Zero Objects). In a category C, an object T is terminal if
for any object C ∈ C, there is a unique morphism C → T . Similarly, an object I is initial if for any
object C ∈ C, there is a unique morphism T → C. An object which is both terminal and initial is
called a zero object.

Following are some examples of terminal, initial, and zero objects:

• The empty set is initial in the category Sets. The terminal objects in Sets are the singleton
sets – the sets with just one element.

• The trivial group is a zero object in Groups.

• Z is initial in the category Rings, and the zero ring (which, confusingly, is not a zero object) is
the terminal object.

Proposition 2. Terminal objects in a category C (if they exist) are unique up to unique isomorphism.
Similarly, if they exist, initial and zero objects are unique up to unique isomorphism.

2.2 A Functor

Definition 2.15 (Covariant Functor). A covariant functor (or just a functor) F : C → D between
categories C and D is a mapping Ob C→ Ob D and Mor C→ Mor D such that:

• F(f : A→ B) = F(f) : F(A)→ F(B),

• F(1A) = 1F(A), and

• F(g ◦ f) = F(g) ◦ F(f).

In short, a functor is a morphism of categories. In particular, every category has the identity functor
1C : C→ C. Thus, we can define Cat as the (locally small) category of small categories and functors
between them. This lets us define isomorphic categories: categories that are isomorphic is the category
Cat. More formally:
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Definition 2.16 (Isomorphism of Categories). Two categories C and D are isomorphic if there exist
functors F : C→ D and G : D→ C that are inverses (F ◦ G = 1D and G ◦ F = 1C). In particular, a
functor is an isomorphism functor if and only if it is bijective on the class of objects and the class of
morphisms.

Definition 2.17 (Properties of Functors). The following are properties that a functor F : C → D
can have:

• F is injective on objects if the object map F0 : Ob C→ Ob D is injective.

• F is surjective on objects if the object map F0 : Ob C→ Ob D is surjective.

• F is injective on morphisms if the morphism map F0 : Mor C→ Mor D is injective.

• F is surjective on morphisms if the morphism map F0 : Mor C→ Mor D is surjective.

• F is faithful if for all A,B ∈ Ob C, the map FA,B : HomC(A,B) → HomD(F (A),F (B)) is
injective.

• F is full if FA,B is always surjective.

The idea of a faithful functor is particularly interesting, as it allows us to formalize our notion that
many categories are simply categories of “sets with extra structure”.

Definition 2.18 (Concrete Categories). A concrete category is a pair (C,F) where C is a category and
F : C → Sets is a faithful functor. In particular, (Groups,FGroups), (Rings,FRings), (Top,FTop)
are all concrete categories with the usual forgetful functors.

Definition 2.19 (Subcategories). We can generalize our earlier notion of a subcategory to match
with our definition of subobject: a subcategory of a category C is a category C′ such that there is an
injective functor from C′ ↪→ C.

Definition 2.20 (Full Subcategories). A full subcategory of a category C is a subclass of objects in
C and all the arrows between them. For example, the category Setsfin is a full subcategory of Sets
but Groups is not a full subcategory of Sets.

Definition 2.21 (Contravariant Functor). A contravariant functor F : C→ D is exactly the same,
except we “reverse the arrows”. Formally, a covariant functor is a mapping Ob(C) → Ob(D) and
Mor(C) and Mor(D) such that:

• F(f : A→ B) = F(f) : F(B)→ F(A),

• F(1A) = 1F(A), and

• F(g ◦ f) = F(f) ◦ F(g) for all composable f, g ∈ Mor(C).

Lemma 3. For any contravariant functor F : C → D, there are covariant functors F ′ : Cop → D
and F ′′ : C→ Dop.

2.3 A Natural Transformation

Definition 2.22 (Natural Transformation). A natural transformation is a “morphism of functors”.
More formally, for categories C and D with morphisms F ,G : C → D, a natural transformation
ϑ : F → G is a family of morphisms in D, (ϑC : F(C)→ G(C))C∈Ob(C), such that, for any f : C → C ′

in C, the following diagram commutes:

F (C) G (C)

F (C ′) G (C ′)

F(f)

ϑC

G (f)

ϑC′
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Then the D-arrow ϑC : F (C)→ G (C) is called the component of ϑ at C.

Definition 2.23 (The Functor Category). The functor category Fun(C,D) has functors F : C→ D
as objects and natural transformations ϑ : F → G as morphisms. In particular, a natural transfor-
mation is called a natural isomorphism if it is an isomorphism in this category (equivalently, if each
component ϑC is an isomorphism).

Definition 2.24 (Equivalence of Categories). An equivalence of categories is a pair of functors:

E : C → D and F : D → C

and a pair of natural isomorphisms:

α : 1C
∼−→ F ◦ E and β : 1D

∼−→ E ◦ F

In this case, we write C ' D (isomorphism of categories is written C ∼= D).

This is not as strong as “isomorphism of categories”, but it is actually more important: identities are
much less important than isomorphisms (just like in group theory, for example), so we seek to push
our equivalences to their limits.

For example, Setsfin ' Ordfin, but clearly they are not isomorphic as categories (in particular, Setsfin

is large whereas Ordfin is not).

Proposition 4. The following conditions on a functor F : C → D are equivalent:

1. F is part of an equivalence of categories.

2. F is full and faithful and “essentially surjective” on objects.

Definition 2.25 (Essentially Small). A category C is essentially small if it is equivalent to a small
category – i.e. there is a set of objects so that every object in your category is isomorphic to one of
these specific objects. For example, given our above result that Setsfin ' Ordfin, Setsfin is essentially
small. Similarly, the category of finitely-generated abelian groups is no small, but it is essentially small.

3 Limits and Colimits

At the core of defining constructions in categories is the idea of the “universal mapping property”
or UMP – an idea which states that the final result of a particular construction, if it is natural,
should satisfy a relationship with every other possible candidate result. In this section, we will create
definitions and explore examples that will make this idea concrete.

3.1 Duality

Definition 3.1 (Dual Statements). For any Σ, the dual statement Σ∗ is formed by replacing f ◦ g
with g ◦ f , cod with dom, and dom with cod (reversing the direction and order of the composition of
all morphisms).

But notice that the axioms for category theory are self-dual! That is, if we let CT denote the axioms
of category theory, CT∗ = CT. Thus, we get the following result about duality:

Proposition 5 (Duality). Formally, for any sentence Σ in the langauge of category theory, if Σ
follows from the axioms of category theory, then so does its dual Σ∗. More conceptually, if Σ is a true
statement about categories, then so is Σ∗.

We usually use the prefix “co-” to denote the dual notion of an object or construction in a category.
In the rest of this section (and indeed the rest of these notes), we will be exploring the co-notions of
any notion that we come across.
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3.2 Cones and Cocones

Definition 3.2 (Diagrams of Shape). Let J be an “index category” (which has no special properties,
like an index set, but is distinguished for convenience) and C be an arbitrary category. Then a diagram
of shape (or diagram of type) J in C is a functor X : J→ C.

We write the objects in the index category J using lowercase i, j, . . . and the value X (i) ∈ C as Xi.

Definition 3.3. A cone to a diagram X consists of an object C in C and a family of arrows in
C, cj : C → Xj (for each j ∈ J), such that for every arrow α : i → j in J, the following triangle
commutes:

C Xj

Xi

cj

ci
Xα

In particular, a morphism of cones ϑ : (C, cj) → (C ′, c′j) is an arrow ϑ in C making the following
triangle commute:

C C ′

Xj

cj

ϑ

c′j

Thus, we can construct a category Cone(X ).

Definition 3.4 (Cocone). A cocone from the base X consists of an object C and a family of arrows
in C, cj : Xj → C for each j ∈ J, such that for all α : i→ j ∈ J, the following triangle commutes:

C Xj

Xi

ci

cj

Xα

In particular, a morphism of cocones: ϑ : (C, cj) → (C ′, c′j) is an arrow ϑ in C making the following
triangle commute:

C C ′

Xj

ϑ

cj
c′j

Thus we can construct a category Cocone(X ).

There is, actually, a much more “elegant” way to interpret these two concepts that avoids the use of
universal properties, bundling it in the idea of natural transformations:

Definition 3.5 (Constant Functors). Suppose we have a category C and an index category J. Then,
for any object A ∈ A, let FA denote the constant functor J → C given by sending every element to
A and every morphism to 1A.

Proposition 6. Given a diagram of shape X : J→ C, a cone to A is given by a natural transformation
FA → X (and a cocone on A is given by a natural transformation FA → X ).
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3.3 Limits and Colimits

Definition 3.6 (Limits). A limit for a diagram X : J→ C is a terminal object in Cone(X ) – there
is a unique morphism from any other cone over X onto it. A finite limit is a limit for a diagram on a
finite index category J. In particular, the limiting cone can be thought of as the “closest cone over”
the diagram D and is denoted lim←−j∈JXj .

Definition 3.7 (Colimits). A colimit for a diagram X : J → C is an initial object in Cocone(X )
– there is a unique morphism from it to any other cocone over X . A finite colimit is a colimit for
a diagram on a finite index category J. In particular, the colimiting cone can be thought of as the
“closest cone under” the diagram D and is denoted lim−→j∈JXj .

Proposition 7 (Uniqueness of Limits and Colimits). A limit or colimit for a diagram X : J→ C, if
it exists, is unique up to unique isomorphism.

Proof. This immediately follows from the proposition that terminal and initial objects are unique up
to unique isomorphism.

In particular, the terminal and initial object of a category C (if they exist) are the limits and colimits,
respectively, of the empty diagram.

3.4 Direct and Inverse Limits

Perhaps the most intuitive use of limits is in the definition of direct and inverse limits.

Definition 3.8 (ω and ωop as Index Categories). Recall that ω = 〈N,≤〉 is a poset – thus we may
consider it as the category:

0 1 2 3 · · ·
Also notice that ωop, the poset 〈N,≥〉, is the category:

0 1 2 3 · · ·
In particular, these are the index categories we use to define “direct and inverse limits”.

Definition 3.9 (Direct Limits). The direct limit (or inductive limit) of a sequence of objects and
morphisms

A0 −→
a0

A1 −→
a1

A2 −→
a2

A3 −→
a3
· · ·

in a category C is the colimit of the diagram of shape X : ω → C which sends each n ∈ N to An.
In particular, the direct limit of the Ai is an object A∞ and morphisms un : An → A∞ such that
un+1 ◦ an = un for each n (universal with this property). In this case, we write A∞ = lim−→Xj .

One example of these is the direct limit in Groups of the groups

G0 −→
g0

G1 −→
g1

G2 −→
g2

G3 −→
g3
· · ·

which one can prove always exists. However, in my opinion, the most striking example is the direct
limit of the sequence (in Fields):

Fpn0 ↪→ Fpn1 ↪→ Fpn2 ↪→
where ni | ni+1 for each i. This in, in fact, the algebraic closure of Fp.

Definition 3.10 (Inverse Limits). The inverse limit (or projective limit) of a sequence of objects and
morphisms

A0 ←−
a0

A1 ←−
a1

A2 ←−
a2

A3 ←−
a3
· · ·

in a category C is the limit of the diagram of shape X : ωop → C which sends each n ∈ N to An.
In particular, the inverse limit of the Ai is an object A0 and morphisms un : A∞ → An such that
un ◦ an+1 = an (universal with this property). In this case, we write A∞ = lim←−Xj .
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For example, let p be a prime and consider the sequence of rings (in Rings):

Z/pZ←−
z1

Z/p2Z←−
z2

Z/p3Z←−
z3
· · ·

The inverse limit, Zp = lim←−Z/pnZ, is called the ring of p-adic integers. As an additive group which
is the inverse limit of finite groups, it is an example of a profinite group.

4 Constructions in Categories

Limits and colimits can be used to construct many different objects in categories. These constructions
generalize common and natural concepts in specific categories.

4.1 Products and Coproducts

Definition 4.1 (Product). Given a class of objects P ⊆ Ob(C) in a category C, we can form a
discrete category D = Dis(P ). Define X to be the natural diagram of shape D in C (simply given
by sending the objects to themselves). The limit of this diagram is called the product of the objects
Pi for each i ∈ D.

Definition 4.2 (Coproduct). The colimit of the same diagram X : D→ C is called the coproduct of
the objects Pi for each i ∈ D.

In the case of two objects, we can define the product and coproduct more intuitively:

Proposition 8 (Alternative Definition of Product). A product diagram for the objects A and B con-

sists of an object P and morphisms A
π1←− P π2−→ B satisfying the following universal mapping property:

Given any diagram A
x1←− X

x2−→ B, there exists a unique u : X → P such that the following diagram
commutes:

X

A P B

u
x1 x2

π2π1

We denote the product of A and B as A×B.

Proposition 9 (Alternative Definition of Coproduct). A coproduct diagram for the objects A and

B consists of an object Q and morphisms A
q1−→ Q

q2←− B satisfying the following universal mapping
property:

Given any Z and A
z1−→ Z

z2←− B there is a unique u : Q → Z with u ◦ q1 = z1 and u ◦ q2 = z2. We
denote the coproduct of A and B as A+B.

For example, in Sets, the product is the Cartesian product and the coproduct is the disjoint union of
sets. In Groups, the product is called “the direct product of groups”. We can even form products
in Cat (where we simply define everything componentwise). In particular, the terminal and initial
objects are empty products and coproducts, respectively.

Proposition 10. There are isomorphisms A × (B × C) ∼= A × B × C ∼= (A × B) × C and similarly
A+ (B + C) ∼= A+B + C ∼= (A+B) + C.

Definition 4.3. A category C is said to have all finite products if it has a terminal object and all
binary products (and therefore products of any finite cardinality). The category C has all (small)
products if every set of objects in C has a product.

Definition 4.4. A biproduct is both a product and a coproduct.

9



4.2 Equalizers and Coequalizers

Definition 4.5 (Equalizers). For any f, g : A → B in a category C, the equalizer of f and g is an
object E and morphism e : E → A such that f ◦ e = g ◦ e with the following universal property:

Given any z : Z → A such that f ◦ z = g ◦ z, there is a unique u : Z → E such that z = e ◦ u. In
particular, this demonstrates that the morphism part of a equalizer is monic.

For example, in Sets, the equalizer of two functions f, g : A→ B is the set E = {x ∈ A | f(x) = g(x)}
and the inclusion E ↪→ A. In Groups, the equalizer of the homomorphisms φ, 0GH : G→ H (where
0 is the zero homomorphism G→ H) is the kernel kerφ and the inclusion kerφ ↪→ G.

Definition 4.6 (Coequalizers). For any parallel arrows f, g : A→ B in a category, the coequalizer of
f and g is an object Q and morphism q : B → Q such that q ◦ f = q ◦ g with the following universal
property:

Given any z : B → Z such that z ◦ f = z ◦ g, there is a unique u : Q → Z such that z = u ◦ q. In
particular, this demonstrates that any morphism of a coequalizer is epic.

Just as equalizers are generalizations of kernels, coequalizers are generalizations of equivalence rela-
tions. Indeed, in Sets, the coequalizer of two functions f, g : A → B is the quotient B/ ∼ and the
projection B → B/ ∼, where ∼ is the smallest equivalence relation such that f(x) ∼ g(x) for all x ∈ A.

In particular, if R is an equivalence relation on a set Y and r1, r2 are the projections Y ×Y ⊇ R→ Y ,
then the coequalizer of r1 and r2 is the quotient set Y/R. This can be used to provide another
perspective on the classic result that the quotient of a group G by a subgroup H ≤ G is well-defined
if and only if H is normal (i.e. the kernel of some homomorphism).

Proposition 11 (An Alternative Definition for Equalizers and Coequalizers). Let J be the category:

0 1
f

g

Then for any category C, the limit (resp. colimit) of the diagram of shape X : J→ C (if it exists) is
the equalizer (resp. coequalizer) of the morphisms XF = X (f) and XG = X (g).

An example of the use of coequalizers is defining “presentations” of groups. Suppose we have the
group G = {g | g8 = 1}. To construct G, let F (g) represent the free group on g and F (n), for some
n ∈ N, represent the free group on n elements. Then find the coequalizer of the following diagram:

F (1) F (g)
g8

1

The result will be the group G and a morphism F (g) → G (a quotient map). For n1 relations
(r1 = s1, r2 = s2, . . . , rn1

= sn1
) on n2 generators (g1, g2, . . . , gn2

), the desired group will be the
object resulting from the coequalizer of the following diagram:

F (n1) F (g1, . . . , gn2)
[r1,...,rn1

]

[s1,...,sn1
]

The category Cat is extraordinarily well-behaved: it has an initial object 0 (the empty category),
a terminal object 1 (the category of one object and only the identity morphism), and all limits and
colimits (thus all products, coproducts, equalizers, and coequalizers).
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4.3 Pullbacks and Pushouts

Definition 4.7 (Pullback). Given a category C and morphisms f : A → C and g : B → C, the
pullback or fiber product of f and g consists of morphisms p1 : P → A and p2 : P → B such that
f ◦ p1 = g ◦ p2 with the following universal property:

Given any z1 : Z → A and z2 : Z → B with f ◦ z1 = g ◦ z2, there exists a unique u : Z → P with
z1 = p1 ◦ u and z2 = p2 ◦ u.

For example, in the category Sets, the pullback of the diagram

A B

C
f g

is the subset X ⊆ A×B consisting of all pairs (a, b) such that f(a) = g(b). Thus, it is the categorical
equivalent of an equation.

Proposition 12 (An Alternative Definition for Pullbacks and Pushouts). Let J be the three-element
category:

A B

C
f g

Then, for any category C, the limit of the diagram of shape X : J→ C is the pullback of f and g or
the fiber product of XA and XB over XC .

Dually, for any category C, the colimit of the diagram of shape X : J→ C is the pushout of f and g
or the cofiber coproduct of XA and XB over XC .

Theorem 13. For a given category C, the following are equivalent:

1. C has all finite limits.

2. C has all finite products and equalizers.

3. C has pullbacks and a terminal object.

Corollary 13.1. By duality, the following are equivalent:

1. C has all finite colimits.

2. C has all finite coproducts and coequalizers.

3. C has pushouts and an initial object.

4.4 Zero Morphisms and Kernels

Definition 4.8 (Left, Right, and Two-Sided Zero Morphisms). A morphism f : X → Y is called a
left zero morphism if, for any g, h : W → X, f ◦ g = f ◦ h. Dually, a morphism f : X → Y is called a
right zero morphism if, for any g, h : Y → Z, g ◦ f = h ◦ f . If a morphism is both a left and a right
zero morphism, we call it a (two-sided) zero morphism.

For example, the zero homomorphism 0GH : G → H is a zero morphism for every group G,H ∈
Groups. There are no left zero morphisms in Sets and the only right zero morphisms are the
functions f : ∅→ S for arbitrary sets S.
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Definition 4.9 (Categories With Zero Morphisms). We say a category C has zero morphisms if, for
every object A,B ∈ C, there is a fixed zero morphism 0AB → C such that, for all objects C and
morphisms f : A→ C and g : C → B, the following diagram commutes:

A C

C B

0AB

0AC

f g

ACB

Definition 4.10 (Kernel and Cokernel). Suppose that C is a category with zero morphisms. Then
if f : X → Y is an arbitrary morphism in C, a kernel of f is an equalizer of f and 0XY . Dually, a
cokernel of f is a coequalizer of f and 0XY .

We let Ker(f) denote the object associated with this equaliser and ker(f) denote the morphism. The
notation is similar for cokernels: Coker(f) is the object and coker(f) is the morphism. Recall that
because they are equalizers and coequalizers respectively, ker(f) is a monomorphism and coker(f) is
an epimorphism for any f (when they are defined).

Lemma 14. Let C be a category and Z ∈ Ob(C) is a zero object. Then a morphism ζ : A→ B is a
zero morphism if and only if it factors through Z – i.e. if ζ = β ◦ α where α : A→ Z and β : Z → B
are the unique morphisms guaranteed by Z being a zero object.

Proof. For the ⇐ direction, consider an arbitrary object C, arbitrary morphisms φ, ξ : C → A, and
suppose that ζ = β ◦ α. Then α ◦ φ and α ◦ ξ are morphisms C → Z – by uniqueness they must be
equal. Then by composing β on the left, ζ ◦ φ = ζ ◦ ξ so ζ is a left zero morphism. By dual logic, ζ is
a right zero morphism.

For the ⇒ direction, let ζ : A → B be a zero morphism and β′ be the unique morphism B → Z.
Applying the zero morphism property to 1B and β ◦ β′ demonstrates that ζ = β ◦ β′ ◦ ζ. But notice
that β′ ◦ ζ is a morphism A→ Z, so by uniqueness it is α. Thus ζ = β ◦ α.

4.5 Images and Coimages

Definition 4.11 (Image and Coimage). Let C be a category and φ : A → B a morphism in C.
Then the kernel of the cokernel of φ is called the image of φ. In particular, im(φ) is the morphism
ker(coker(φ)) and Im(φ) is the object Ker(Coker(φ)).

Dually, the coimage of φ is the cokernel of the kernel of φ. We use the obvious notation coim(φ) and
Coim(φ) for the morphism and object of this resulting construction.

5 Exponentials and Yoneda’s Lemma

Consider a function of sets f(x, y) : A×B → C written using x ∈ A and y ∈ B. If we hold a fixed, we
are given a function f(a, y) : B → C ∈ CB . Thus the original function f induces a map f : A→ CB

given by a 7→ f(a, y). Notice that f is uniquely determined by the requirement f(a)(b) = f(a, b).

Indeed, any map φ : A → CB is of the form f for some function f : A × B → C, since we can set
f(a, b) := φ(a)(b). Thus, HomSets(A×B,C) ∼= HomSets(A,C

B).

There is another important property of sets of functions: there is an evaluation function ε : CB×B →
C given by (f, b) 7→ f(b). This function has the universal mapping property that, for any f : A×B →
C, there is a unique f : A→ CB such that ε ◦ (f, 1B) = f – in other words ε(f(a), b) = f(a, b).

All of this inspires a categorical generalization: the exponential.
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5.1 Exponentials

Definition 5.1. Let C be a category with binary products. An exponential of objects B and C
consists of an object CB and a morphism ε : CB ×B → C such that, for any object A and morphism
f : A×B → C, there is a unique f : A→ CB that makes the following diagram commute:

CB ×B C

A×B

ε

f
f×1B

In this case, ε is called the evaluation morphism and f is called the transpose morphism of f . Fur-
thermore, the transposition operation

(f : A×B → C)→ (f : A→ CB)

is an inverse to the operation

(g : A→ CB)→ (g = ε ◦ (g × 1B) : A×B → C)

giving us the isomorphism HomC(A×B,C) ∼= HomC(A,C
B).

Definition 5.2 (Cartesian Closed). A category with all finite products and exponentials is called
cartesian closed.

For example, Sets is a cartesian closed, as CB is simply the set of functions from B → C and the
morphism ε : CB ×B → C is just the standard evaluation morphism (b, f)→ f(b).

Proposition 15. The category Cat is cartesian closed, with the exponentials being DC = Fun(C,D).

In particular, C1 = C and C2 = C→, the morphism category. Another example: for any set I
regarded as a discrete category, we have a isomorphism of categories CI =

∏
i∈I C.

5.2 Presheaves, Sheaves, and Yoneda’s Lemma

Definition 5.3 (Presheaves in Topology). Take a topological space X and a category C. Then a
presheaf F on X is functor with values in C with the following data:

1. Every open set U ⊆ X corresponds to an object F(U) ∈ Ob(C).

2. Every inclusion of open sets V ⊆ U corresponds to a morphism resV,U : F (U)→ F (V ) in C.

Of course, we require the morphisms (called restriction morphisms) to satisfy the following properties:

1. resU,U : F (U)→ F (U) is the identity morphism on F (U).

2. For any three open sets W ⊆ V ⊆ U , resW,V ◦ resV,U = resW,U .

If F is a C-valued presheaf on X and U is an open subset of X, then F (U) is called the sections of F
over U . If C is a concrete category, then each element of F (U) is called a section. In particular, if s
is a section of F (U), then resV,U (s) is denoted s|V . Finally, a section over X is called a global section.

Definition 5.4 (Presheaves in Category Theory). A presheaf on a category C is a contravariant
functor C → Sets (equivalently, it is a covariant functor Cop → Sets). Thus, the category of all

presheaves on a category C is denoted SetsC
op

.

In particular, if C is the poset of open sets in a topological space X interpreted as a category, then
this definition coincides with the earlier definition of presheaves in a topology.
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Definition 5.5 (Sheaves in Topology). A presheaf to Sets is a sheaf it is satisfies the following two
axioms:

1. If (Ui) is an open covering of an open set U and if s, t ∈ F (U) such that s|Ui = t|Ui for each Ui
in the covering, then s = t.

2. If (Ui) is an open covering of an open set U and if, for each i, a section si ∈ F (Ui) is given such
that for each pair Ui, Uj , si|Ui∩Uj = sj |Ui∩Uj (they agree on the shared spaces), then there is a
section s ∈ F (U) such that s|Ui = si for each i.

We call the first axiom the locality axiom and the second axiom the gluing axiom.

In short, sheaves are generalizations of normal topological spaces. They retain structure as images
of topological spaces, but can be strictly more free. For example, if we let our topological space be
X = Rn, then on each open set U ⊆ we have the ring of differentiable functions O(U). This association
induces a sheaf from X to Sets, and is the prototypical example of a sheaf – yet it is not immediately
clear how one would make the set of differentiable functions on X into a topological space.

Definition 5.6 (Embeddings). A functor F : C → D is called an embedding if it is full, faithful, and
injective on objects.

Definition 5.7 (The Yoneda Embedding). The Yoneda embedding is the functor Y : C → SetsC
op

taking C ∈ C to the representable functor

Y (C) = HomC(−, C) : Cop → Sets

and taking f : C → D to the natural transformation

Y (f) = HomC(−, f) : HomC(−C, )→ HomC(−D, )

It is not immediately obvious that the Yoneda embedding is actually an embedding, but we will
eventually prove that this is the case.

One should thus think of the Yoneda embedding as a “representation” of C in a category of set-valued
functors and natural transformations on some index category.

Lemma 16 (Yoneda’s Lemma). Let C be locally small. For any object C ∈ C and functor F ∈
SetsC

op

, there is an isomorphism

HomSetsC
op (Y (C),F) ∼= F(C)

which is natural in both F and C. More explicitly, the naturality in F implies that the following
diagram commutes for any X : F → G:

Hom(Y (C),F) F(C)

Hom(Y (C),G) G(C)

Hom(Y (C),X )

∼=

X

∼=

Similarly, the naturality in C implies that the following diagram commutes for any h : C → D:

Hom(Y (C),F) F(C)

Hom(Y (D),F) F(D)

Hom(Y (h),F)

∼=

X

∼=

Proof. Covered in pages 189-192 of Awodey’s Category Theory.

Theorem 17. The Yoneda embedding Y : C→ SetsC
op

is full and faithful.

Also observe that Y is injective on objects. For, given objects A,B in C, if Y (A) = Y (B) then
1A ∈ Hom(A,A) = Y (A)(A) = Y (B)(A). Thus the Yoneda embedding is actually an embedding.
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5.3 Applications of Yoneda’s Lemma

Corollary 17.1. Given objects A and B in a locally small category C, Y (A) ∼= Y (B) if and only
if A ∼= B. In particular, we can think of this by saying that an object is determined exactly by its
relationships with other objects.

Corollary 17.2. In a cartesian closed category C, (AB)C ∼= A(B×C).

Corollary 17.3. If a cartesian closed category C also has coproducts, then A× (B+C) ∼= (A×B) +
(A× C).

6 Adjoints

Definition 6.1 (Adjunctions). An adjunction consists of functors F : C→ D and U : D→ C and a
natural isomorphism φ : HomD(F(C), D)

∼−→ HomC(C,U(D)).

Definition 6.2 (Adjoint). In this case, F is called the left adjoint and U is called the right adjoint.
One writes F a U say F and U are adjoint functors.

Definition 6.3 (Units and Counits). We call η : 1C → U ◦ F determined by ηC = φ(1F(C)) for any
C ∈ C the unit of the adjunction. Similarly, we call ε : F ◦ U → 1D determined by εD = ξ(1U(D)) for
any D ∈ D the counit of the adjunction.

Proposition 18. Adjoins are unique up to isomorphism. Specifically, given a functor F : C → D
and two other functors U, V : D→ C such that F a U and F a V , we have that U ∼= V .

A particularly exciting example are the adjoint functors between the orbit category of G and the poset
category of intermediate fields between k and a field extension F/k – more commonly known as the
Galois correspondence described by the Fundamental Theorem of Galois Theory. In fact, this is often
generalized: a Galois connection is an adjunction between functors on posets. To see more examples,
visit this link.

7 The Fundamental Group as a Functor

In this section, we will develop the necessary tools to prove Brouwer’s Fixed-Point Theorem using
functors and the fundamental group. Since we are working within Rn, one only needs to know basic
definitions: what a subset is, the Euclidean metric, etc.

7.1 The Necessary Prerequisites

Definition 7.1 (Space). A space X is a subset of Rn. A pointed space is a pair (X,x0) of a space X
and a point x0 ∈ X, called the basepoint of X.

For example, the space Rn is called Euclidean n-space. R0 - a single element - is called a point. We
define the n-disk as

Dn := {x ∈ Rn | |x| ≤ 1}.
Similarly, we define the n-sphere as

Sn := {x ∈ Rn+1 | |x| = 1}.

Finally, the unit interval is simply the subset I := [0, 1] ∈ R.

Definition 7.2 (Continuity). A map of spaces f : X → Y is continuous if, for any sequence of
points {xi}i∈N converging to x ∈ X, the sequence {f(xi)}i∈N converges to f(x) ∈ Y . In particular, a
continuous map of pointed spaces f : (X,x0)→ (Y, y0) is a continuous map of spaces f : X → Y such
that f(x0) = y0.
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Theorem 19. A map f : S → Rn given by s 7→ (f1(s), f2(s), . . . , fn(s)) is continuous if and only if
s 7→ fi(s) is a continuous map S → R for each i ∈ {1, . . . , n}.

Definition 7.3 (Paths and Loops). A path in a space X is a continuous map f : I → X. A loop in
a pointed space (X,x0) is a path f : I → X such that f(0) = f(1) = x0.

Definition 7.4 (Homotopies of Paths and Loops). A homotopy of paths on X is a continuous map
f : I × I ′ → X with f(0, t) = f(0, 0) and f(1, t) = f(1, 0) for all t. A homotopy of loops on (X,x0)
on (X,x0) is a continuous map f : I × I ′ → X with f(0, t) = f(1, t) = x0.

Definition 7.5 (Homotopic and Nullhomotopic). Define ft : I → X as the path s 7→ f(s, t). Two
paths g and h are homotopic (denoted g ∼ h) if there exists a homotopy f : I × I ′ → X such that
f0 = g and f1 = h. Furthermore, a loop is nullhomotopic if it is homotopic to the constant loop (i.e.
the loop f : I → X given by f(t) = x0 for all t).

For example, given the pointed space (R2, (0, 0)), the loop f : I → R2 given by s 7→ (1−cos(2πs), sin(2πs)
is nullhomotopic (as we squash the circle into a point).

Proposition 20. Homotopy defines an equivalence relation on the set of loops in a space: in partic-
ular, it is reflexive, symmetric, and transitive.

Proof. The constant homotopy proves that this relation is reflexive. Symmetry follows from replacing
t with 1− t (doing the interpolation in reverse). Finally, transitivity comes from doing the homotopy
f ∼ g and g ∼ h at double speed and linking them together. More explicitly, if F is a homotopy
between f and g and G is a homotopy between g and h,

H(s, t) =

{
F (s, 2t) if 0 ≤ t ≤ 1

2

G(s, 2t− 1) if 1
2 < t ≤ 1

is a homotopy from f to h.

Thus, in particular, the equivalence relation of homotopy partitions the loops (X,x0) into equivalence
classes called homotopy classes.

7.2 The Fundamental Group

Definition 7.6 (Composition of Paths and Loops). Let f, g : I → X be two paths. Then the
composition of f and g, f ? g : I → X is defined as

(f ? g)(t) :=

{
f(2t) if 0 ≤ t ≤ 1

2

g(2t− 1) if 1
2 < t ≤ 1

This is also well-defined for loops: if f and g are loops, then f ? g will also be a loop. Furthermore,
this respects the equivalence relation of homotopy: it should be clear that if f0 ∼ f1 and g0 ∼ g1,
then f0 ? g0 ∼ f1 ? g1.

Definition 7.7 (Fundamental Groups). The fundamental group of (X,x0), denoted π1(X,x0) is the
group whose underlying set is the set of loops of (X,x0) up to homotopy, with composition operation
given by [f ] · [g] = [f ? g] for loops f, g : I → X.

Proposition 21. The fundamental group π1(X,x0) is a group.

Proof. The identity is given by the constant path e : I → X sending t 7→ x0. Given a loop f : I → X,
the inverse loop f−1 : I → X is f−1(t) = f(1 − t). As it turns out, though f ? f−1 6= e, they are
homotopic (to see this, move the midpoint of the path backwards along the path until it coincides
with the constant path). Finally, associativity holds because clearly [(f ? g) ? h] = [f ? (g ? h)].

16



Definition 7.8 (Path Connected and Simply Connected). A space X is path connected if there is a
path joining any two points. A space is simply connected if it is path connected and, for all points
x ∈ X, π1(X,x) = 0 (that is, any loop can be reduced to the constant path).

Lemma 22. If X is a path connected space, then π1(X,x) ∼= π1(X, y) for any two points x, y ∈ X.

Definition 7.9 (Homeomorphisms). A continuous map of spaces f : X → Y is called a homeomor-
phism if there is a map g : Y → X with f ◦ g = idY and g ◦ f = idX . In this case, we say X and Y
are homeomorphic and write X ∼= Y .

Theorem 23. If f : X → Y is a homeomorphism with x→ y, then π1(X,x) ∼= π1(Y, y).

Proof. Left as an exercise.

7.3 A Quick Aside: Topological Groups

Definition 7.10 (Group Spaces and Topological Groups). A group space (or topological group) is
a space G with a continuous multiplication map m : G × G → G and a continuous inversion map
i : G→ G making the underlying set of G into a group.

Theorem 24. If G is a group space and e ∈ G is the identity point, then π1(G, e) is abelian.

Proof. This follows immediately from the definition, but it is fairly tedious: one must actually exhibit
an explicit formula.

Corollary 24.1. π1(S1, x0) is abelian.

Proof. S1 can be given a group structure by defining x0 to be the identity and letting any point y ∈ S1

act as the rotation given by dragging y to x0. Thus (S1, x0) is group space, so the result follows.

7.4 Proving Brouwer’s Fixed-Point Theorem

Lemma 25. The fundamental group G of (S1, x0) is nontrivial.

Proof. The constant path is not homotopic to the path comprised of a single loop around the circle.
Thus there are at least two homotopy classes, so |G| > 1.

Proposition 26. The map from the category of pointed topological spaces Top∗ to Groups given by
(X,x0)→ π1(X,x0) is a functor, which we denote π1.

Proof. By definition of a functor, this simply amounts to showing that for any two continuous maps
of pointed spaces f : (X,x0)→ (Y, y0) and g : (Y, y0)→ (Z, z0), the following hold:

1. f induces a homomorphism π1(f) : π1(X,x0)→ π1(Y, y0).

2. If f is the identity map (X,x0)→ (X,x0), then π1(f) is the identity map of groups π1(X,x0)→
π1(X,x0).

3. The homomorphism π1(g ◦ f) is equal to the homomorphism π1(f) ◦ π1(g).

Filling in the details is left as an exercise to the reader.

Theorem 27 (Brouwer’s Fixed-Point Theorem). Any continuous map from the unit disk D2 to itself
has a fixed point.

Proof. Assume the theorem is false by taking a continuous map g : D2 → D2 so that x 6= g(x) for all
x ∈ D2. Define a continuous map h : D2 → S1 given by mapping x to the point on the boundary of
D2 on the ray starting at g(x) and through x. Notice h(x) = x for every x ∈ S1. Then let i denote
the inclusion map S1 ↪→ D2, so that h ◦ i = idS1 . In other words, the following diagram commutes:
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S1 D2 S1i

idS1

h

Notice that any loop D2 continuously deforms to a given point, so π1(D2) = 0, the trivial group.
Thus, applying the functor π1 to this diagram gives us the following diagram:

G 0 G
π1(i)

idG

π1(h)

But clearly this is impossible since G is nontrivial, hence the result follows.

7.5 Applications of Brouwer’s Fixed-Point Theorem

Maps: Consider a map of a country. If that map is placed anywhere in that country, there will
always be a point on the map that represents that exact point in the country. Equivalently, given two
similar maps of a country of different sizes resting on top of each other, there always exists a point
that represents the same place on both maps.

Game Theory: A beautiful application of Brouwer’s Fixed-Point Theorem is that the Game of Hex
must always have a winner: to find out more, visit this link. The existence of Nash equilibria, a
fundamental result in game theory, is also linked to Brouwer’s Fixed-Point Theorem.

7.6 Example: A One-Diagram Proof

Theorem 28. There is no continuous function φ : D2 → S1 fixing S1.

S1 Z

D2 {0}

S1 Z

inclusion

idS1

π1(h)

idZ

φ

π1:Top∗→Grp

π1(i)

Explanation: If there was such a continuous function φ, then the left-hand side would be commuta-
tive. But by the functoriality of π1, this would imply the right-hand side is commutative – clearly an
impossibility since no possible map {0} → Z is surjective.

8 An n-Category

Definition 8.1 (n-morphisms). A 1-morphism is any morphism between objects in a category. Then,
for any natural number n > 1, an n-morphism is a morphism between (n− 1)-morphisms – i.e. a pair
of maps g1 and g2 such that:
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A A′

B B′

f

g1

h

g2

where f and h are (n− 1)-morphisms, so A,B,A′, B′ are (n− 2)-morphisms.

Definition 8.2 (n-category). An n-category is a category with objects and morphisms plus k-
morphisms for every k ≤ n.

For an example of why a 2-category might be interesting, consider the category Cat. The morphisms
in Cat are functors, so the 2-morphisms are natural transformations. Thus the 2-category version of
Cat more naturally contains the structure of natural transformations.

But then, to study 2-categories, we need 3-categories, and so on. At the end of the road, we encounter
the ∞-category, which contains n-morphisms for every n ∈ Z+. These categories are used extensively
in algebraic topology (especially homotopical algebra).

9 Applications of Category Theory and Where to Learn More

I used Awodey’s book on Category Theory to learn and create these notes. Another good book is
“Category Theory for the Working Mathematician” by Mac Lane, the founder of the field. If you’d
like to explore, try out the following resources. They include places to learn about applied category
theory, if you so desire.

1. Math3ma: Limits and Colimits, Part 1

2. Math3ma: Limits and Colimits, Part 2

3. Math3ma: Limits and Colimits, Part 3

4. Math3ma: Limits and Colimits, Part 4

5. The Fundamental Group

6. Brouwer’s Fixed Point Theorem

7. Proving Brouwer’s Fixed Point Theorem — Infinite Series

8. The Fundamental Group and Brouwer’s Fixed Point Theorem

9. Brouwer’s Fixed Point Theorem

10. Programming and Category Theory, Part 1

11. Relating Category Theory to Programming Language Theory

12. Seven Sketches in Compositionality: An Invitation to Applied Category Theory

13. What is Applied Category Theory?

14. Why Category Theory Matters
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