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1 Introduction

The goal of these notes are to outline the formal math behind the images posted on my website here (and
also at the end of these notes), which I think only adds to the aesthetic beauty of the images. However,
following these notes is not at all necessary to appreciate the images, and if you do not feel up to diving into
the formal math, I want to provide an option for you. If you don’t want to work through these notes (or
even if you do), I encourage you to think of the images in the following visual way.

Imagine a square table. On this square table we have placed thousands, perhaps millions, of tiny cubic grains
of sand, aligned with each other to span the entire table. These grains of sand, despite their symmetric shape,
are unstable due to their miniscule size; if there are more than 4 grains of sand stacked on top of each other,
the tower will fall, spilling grains of sand equally in all four directions (any extra grains of sand, up to 3, it
will retain). On the edges, sometimes towers spill over the edge, scattering grains of sand onto the ground.

You and I, out of curiosity at the dynamics of this system, have invented a method of dumping one sandpile
onto another sandpile perfectly, with each tower stacking entirely on another. It’s an engineering marvel
and probably not physically possible, but it’s certainly fun to watch. The identity elements – graphically
represented by the images referenced above – are the unique “big enough” piles of sand such that, when we
dump them on another sandpile and let the dust (or, rather, grains of sand) clear, we get the sandpile we
started with. I can’t create such a machine, so I can only imagine it – but in my mind’s eye, watching the
grains of sand roll off the table to reveal the exact configuration we started with looks absolutely magical.
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1.1 Important Considerations

These notes are based on the book “The Mathematics of Chip-Firing” by Caroline J. Klivans. These notes
draw from and summarize Chapters 1-4. Special thanks to Libby Taylor, who read this book alongside me
and answered any questions I had as a part of Stanford’s Math Directed Reading Program.

Roughly speaking, chip-firing can be understood as a discrete form of diffusion, where a certain number of
chips are placed on the vertices of a graph and spread out from areas of high concentration. As such, the
game of chip-firing is combinatorial in nature, but since it is usually analyzed with tools from algebra (in
particular, recent research has emphasized the role of algebraic geometry and commutative algebra) it is
classified as belonging to the field of algebraic combinatorics.

Assumed prerequisites: group theory (up through the structure theorem for finitely generated abelian groups),
abstract linear algebra, and the very basics of graph theory. Any terms not often defined in these classes
(ex. cokernel) will be defined and explained here.

Important assumption: All graphs discussed will be connected.

2 What is Chip-Firing?

Let G = (V,E) be a finite graph with n vertices. Label the vertices of G by v1, . . . , vn. Our first step will
be to formalize the concept of placing “chips” on the vertices of a graph.

Definition 1 (Chip Configuration). A chip configuration for G is a non-negative integer vector

c = (c1, c2, . . . , cn) ∈ Zn
≥0

where each coordinate of the vector corresponds to the number of “chips” at a particular vertex. Each
coordinate ci represents the number of chips at the vertex vi.

Definition 2 (Ready to Fire). Given a chip configuration c for G, a vertex v is ready to fire if cv ≥ deg(v).

Definition 3 (Firing). Given a chip configuration c for G, a vertex v fires by sending one chip to each of
its neighbors. Formally, this process corresponds to creating a new vector c′ = (c′1, . . . , c

′
n) ∈ Zn where

1. c′v = cv − deg v,

2. c′w = cw + 1 for each w neighboring v, and

3. c′w = cw for each vertex w not neighboring w.

We say that this is a legal fire if c′ is still a chip configuration; that is, if its entries are all still nonnegative.

Definition 4 (Stable). A chip configuration c is stable if no vertex is ready to fire.

Definition 5 (Chip-Firing Process). The chip-firing process on a finite graph G starts with an initial chip
configuration c, and at each step selects and fires a vertex which is ready to fire. If, at any step, a stable
configuration is reached, then the process stops and we say the process has stabilized.

Note that the chip-firing process is not guaranteed to stabilize (we will see examples and theorems describing
cases where it does not).
Now, prima facie it might appear that the terminal state of the chip-firing process might depend how we
choose which ready-to-fire vertex we fire (if there is more than one ready vertex), but we will soon see
that chip-firing satisfies a “confluence property” which avoids this issue. More precisely, we will see that if
the chip-firing process starting with a chip configuration c for G terminates, there is a unique stable chip
configuration c′ which is reachable from c by legal fires.
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2.1 The Adjacency and Laplacian Matrices

Definition 6 (Adjacency Matrix). The adjacency matrix of G is the n× n matrix A given by

Aij =

{
1 if {vi, vj} ∈ E
0 otherwise.

Definition 7 (Laplacian). The Laplacian ∆(G) of G is the n× n matrix given by

∆ij =


deg(vi) if i = j

−1 if {vi, vj} ∈ E
0 otherwise.

In other words, if D is the diagonal matrix with Dij = δij deg(vi), then ∆(G) = D − A. It is a basic
result in graph theory that the rank of ∆(G) is equal to the number of vertices of G minus the number of
connected components of G. Since we assume G is connected, ∆(G) has rank n−1. In particular, the kernel
of ∆(G) : Zn → Zn is spanned by the vector 1 = (1, . . . , 1).

Note: By abuse of notation, we will denote ∆(G) by ∆ when the graph in question is clear.

The Laplacian is relevant because firing at the vertex vi corresponds to subtracting the ith row of ∆(G)
from the current chip configuration. Precisely,

Proposition 1. Given a chip configuration c, the chip configuration c′ given by firing at vi is

c′ = c−∆ei

where ei =
[
δi1 . . . δin

]>
is the ith standard basis vector in Rn.

Definition 8 (Characteristic Vector). Let S ⊆ V be a subset of vertices of a graphG. Then the characteristic
vector of S ⊆ V is defined to be

χS =

n∑
i=1

xiei,

where ei is the ith standard basis vector in Rn, and xi = 1 if vi ∈ S and 0 otherwise. Therefore, χS is the
vector whose ith entry is 1 if vi ∈ S and 0 otherwise.

Definition 9. Let S ⊆ V be a subset of vertices of G. Then the cluster-fire of S from configuration c is

c′ = c−∆(G)χS .

The cluster-fire is called legal if c′ is still a chip configuration. We imagine this as firing simultaneously at
all vertices in S, starting from the chip configuration c on G.

Notice that it is possible for a cluster-fire of S from configuration c to be legal while individually firing at
some of the vertices of S is illegal. For example, the cluster-fire at the entire vertex set V is always legal (it
leaves the chip configuration unchanged) even while various vertices are not ready to fire.

2.2 Examples of Chip-Firing

Here, as a way to build intuition, we consider two examples of the chip-firing process – one that stabilizes,
and one that does not. We’ll use the following graph with just four vertices as G.
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First, let’s look at a chip-firing process that stabilizes.

Next, let’s look at a chip-firing process which doesn’t stabilize.

Notice that the first and last configurations are the same, implying an infinite loop.

2.3 Local and Global Confluence

Theorem 2 (Local Confluence). Suppose c1 and c2 are two configurations on a graph G which are both
reachable from a configuration c after one firing. Then there exists a common configuration d reachable from
both c1 and c2 after a single firing.

Proof. Suppose c1 and c2 are reachable from c by firing v1 and v2. After firing v1, then we are certainly
still able to fire v2 (since the number of chips at v2 has either stayed the same or increased). Similarly, after
firing v2, then we are certainly still able to fire v1. Therefore, firing in either order are both equal to the
cluster fire at {v1, v2}.

Corollary 2.1 (Global Confluence). If a stable configuration cs is reachable from a configuration c after a
finite number of legal fires, then cs is the unique stable configuration reachable from c. Also, the number of
times each site fires (and hence the length) of any stabilizing sequence is the same.

Proof. This simply results from inductively applying local confluence.

Definition 10 (Stabilization of a Configuration). If c is a chip configuration, then let stab(c) denote the
unique stable configuration resulting from a sequence of legal fires from c (if one exists).

2.4 Basic Results on Stabilization

Lemma 3. Suppose the initial configuration c on a connected graph G never stabilizes. Then every vertex
fires infinitely often in the chip-firing process starting at c.

Proof. By the Pigeonhole Principle, some vertex must fire infinitely many times. But then, it distributes
infinitely many chips to its vertices, so each of its neighbors will fire infinitely many times, each of their
neighbors will fire infinitely many times, and so on. Since the graph is connected, this inductive process will
necessarily reach every vertex.

Corollary 3.1. The chip-firing process starting from an initial configuration c is finite if and only if there
exists a vertex which fires finitely many times during the stabilization of c.

Lemma 4. Given a configuration c on G, if every vertex of G can fire at least once, then the chip-firing
process from c does not stabilize.

Proof. Suppose all vertices fire and the process stabilizes. Then, if v is the vertex which stops firing first,
then all the other vertices fire at least once. But then v has certainly gained at least deg v vertices, so it can
fire again! Thus the process is not stable, a contradiction.
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Corollary 4.1. The chip-firing process starting from an initial configuration c is finite if and only if there
exists some vertex which never fires during the stabilization of c.

Now, we’ll give some rough bounds that will help us discover when chip configurations stabilize.

Theorem 5. Let G be a finite connected graph with n vertices and m edges. Suppose c is a chip configuration
on G with N chips (that is, c1 + · · ·+ cn = N). Then,

1. If N > 2m− n, the chip-firing process starting at c is infinite.

2. If m ≤ N ≤ 2m− n then the chip-firing process starting at c could be finite or infinite.

3. If N < m, then the chip-firing process starting at c is finite.

Proof.
(1) For the first part of the question, suppose N > 2m − n. Now,

∑
v∈V deg(v) = 2m. Thus, by the Pi-

geonhole Principle, there’s always a vertex with at least deg(v) chips, and hence always a vertex ready to fire.

(2) For this part of the question, we need to find a configuration whose chip-firing process is finite and a
configuration whose chip-firing process is infinite for each N satisfying m ≤ N ≤ 2n −m. For the former,
take the configuration with deg(v) − 1 chips at each vertex. This has 2n − m chips and is stable, so its
chip-firing process is trivially finite. We can also remove some of these chips to get a stable configuration
with anywhere between m and 2m− n chips.

However, producing configurations satisfying the chip-requirement of (2) whose chip-firing process is infinite
is more difficult, and requires a few definitions and propositions to do with directed graphs.

Definition 11 (Acyclic Orientation). Given an (undirected) graph G, an orientation of G is an assignment
of directions to each edge of G, making G into a directed graph. An acyclic orientation of G is an orientation
of G such that there are no directed cycles.

Proposition 6. Every finite graph G has an acyclic orientation.

Proof. Label the vertices of G by v1, . . . , vn arbitrarily. Then, if there exists an edge between vi and vj ,
direct the edge from vi to vj if i < j and from vj to vi if j < i. There are no cycles in this orientation
because of the transitive property of the usual ordering on the natural numbers.

Definition 12 (Indegree and Outdegree). Suppose v is a vertex in a directed graph G. Then the number of
edges pointing into v is the indegree of v, and the number of edges pointing out of v is the outdegree of v. A
parent of v is a vertex with an edge pointing to v; the number of parents of v is equal to the indegree of v.

Definition 13 (Source Vertex). A source vertex vs is a vertex of a directed graph with indegree 0.

Proposition 7. Every finite graph G with an acyclic orientation O has a source vertex vs.

Proof. Suppose, for the sake of contradiction, that every vertex of G has indegree 1 or higher. Pick any
vertex of G; since it has positive indegree it has a parent. Visit the parent, and since this parent has positive
indegree we can visit its parent. Repeating this process, we notice that by the Pigeonhole principle we must
visit a vertex we’ve already visited. But this induces a cycle, a contradiction with the fact that O is an
acyclic orientation. Hence our assumption was incorrect, and a vertex of G has indegree 0, as desired.

Hence we can take an acyclic orientation of G. Place outdeg(v) chips at each vertex v; this uses a total of
m chips since each edge adds one to the sum of all vertices’ outdegrees. Let vs be the source vertex of this
orientation, and fire at vs. Then, reverse the orientation of all edges incident to vs. The resulting orientation
is acyclic since vs was a source vertex, and the number of chips at each vertex is still equal to the outde-
gree. Hence we can repeat. Furthermore, if we add more chips, the chip-firing process is still infinite, so by
adding chips we can get a configuration with infinite chip-firing process and N chips for any m ≤ N ≤ 2m−n.

(3) For the final part of the question, suppose N < m. Now, for each edge e in the graph, consider the first
chip that fires across e. Associate this chip with e so that in every following firing, this chip either moves
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across e or doesn’t move at all. The initial configuration has less chips than edges, so there is some edge
with no associated chip. But that means that the two endpoints of this edge do not fire, so by our earlier
work the configuration must stabilize.

3 Chip-Firing with Sinks

Definition 14 (Graph with a Sink). Let G = (V,E) be a finite graph and q ∈ V be a distinguished vertex
(called the sink vertex ). Then (G, q) is called a graph with a sink. By abuse of notation, we often denote
(G, q) by G when the sink vertex q is well-understood.

Definition 15 (Configuration with a Sink). Let G = (V,E) be a finite graph with n + 1 vertices and sink
vertex q. Then a chip configuration on G is an integer vector c = (c1, . . . , cn, cq) such that ci ≥ 0 for all
i 6= q. Notice that cq is allowed to be negative! In fact, we often normalize the configuration on a graph
with a sink by defining cq = −

∑n
i=1 ci.

Definition 16 (Stable Configuration). A configuration c on a graph with a sink is stable if no non-sink
vertex is ready to fire; that is, cv < deg(v) for all non-sink vertices v 6= q.

3.1 All Graphs with Sinks Stabilize

Definition 17 (Chip-Firing on a Graph with a Sink). The chip-firing process on a graph with a sink on
a finite graph G with sink q starts with an initial chip configuration c, and at each step selects and fires a
non-sink vertex which is ready to fire. If a stable configuration is reached, then the process stops.

Proposition 8. Let G be a finite graph with a sink q. Then every initial configuration c on G eventually
reaches a stable configuration.

Proof. If the chip-firing process doesn’t stabilize, then every vertex fires infinitely many times (as discussed
earlier). In particular, every neighbor of the sink fires infinitely many times. But each time this happens,
one chip moves into the sink, decreasing the number of chips on firing vertices. Since there are only finitely
many chips on G, this is a contradiction; eventually there would not be enough chips to fire.

3.2 Critical Configurations

Definition 18 (Criticality). A configuration c is critical if it is stable, and reachable from a sufficiently
large initial configuration b, where a configuration is sufficiently large if every non-sink vertex is ready to
fire: bv ≥ deg(v) for all v 6= q.

The critical configurations can be roughly thought of as the “interesting” stable configurations.

3.3 Firing Equivalence

First, let’s consider the idea of firing equivalence on graphs without sinks:

Definition 19 (Firing Equivalence). Let G be a graph on n vertices with graph Laplacian ∆. Two integer
sequences c and d in Zn are firing-equivalent on G, denoted c ∼ d, if d − c = ∆z for some z ∈ Zn. The
equivalence class of c is denoted [c] and called the firing-class of c.

Hence the firing classes on G are the elements of the cokernel of the map ∆ : Zn → Zn.

Now, to define firing equivalence on graphs with sinks, we need a way to consider a Laplacian which somehow
encodes the idea that the sink is not allowed to fire. Luckily, this is simple:

Definition 20 (Reduced Laplacian). Let ∆ be the Laplacian of a graph G with sink q. Then, the reduced
graph Laplacian of G with respect to q, denoted ∆q, is the matrix obtained from ∆ by deleting the row and
column corresponding to q. Similarly, a configuration c is said to “have its values at the sink suppressed” if
the row corresponding to q is deleted.
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Recall that since we usually say that a graph with sink has n+ 1 vertices, ∆q will still be an n× n matrix.

Also, recall that ∆ is an (n+ 1)× (n+ 1) matrix of rank n (since we assume that the graph G is connected),
with kernel spanned by 1 = (1, . . . , 1). Therefore, deleting a row and column to get ∆q will eliminate the
kernel; hence ∆q has rank n. In particular, ∆q : Zn → Zn is injective.

Definition 21 (Firing Equivalence on Sinks). Let G be a graph with n+ 1 vertices and sink q. Then, if c
and d are configurations with their values at the sink suppressed, then c and d are firing-equivalent, denoted
c ∼ d, if d− c = ∆qz for some z ∈ Zn. The equivalence class of c is denoted [c] and called the firing-class
of c. Again, the firing classes on G are the elements of the cokernel of the map ∆q : Zn → Zn.

Since ∆q : Zn → Zn is injective, it has finite cokernel by the structure theorem for finite Abelian groups;
therefore there are finitely many firing-classes on a graph with sink.

Theorem 9. For a graph G with sink q and reduced Laplacian ∆q, there exists a unique critical configuration
per firing class (equiv. per element of the cokernel of ∆q).

Proof. Assume G has n+ 1 vertices, so that ∆q : Zn → Zn is injective. We prove the following lemma:

Lemma 10. There exists a vector z ∈ Zn such that ∆qz > 0; that is, each coordinate of ∆qz is positive.

Proof. First, notice that since ∆q : Zn → Zn is injective, it extends naturally to an invertible map ∆q :
Qn → Qn with the same matrix representation. Therefore, there exists a rational matrix ∆−1q . Now let 1
be the all ones vector, and define g = ∆−1q 1. Since ∆−1q is rational, g may not be an integer vector. Let
λ ∈ Z+ be sufficient to clear denominators so that z = λg is an integer vector. But then

∆qz = ∆qλg = λ∆qg = λ∆q∆−1q 1 = λ1 ≥ 1 > 0.

The above lemma will be used to prove existence. For uniqueness, we will prove the following:

Lemma 11. Suppose c and d are two firing-equivalent chip configurations. Then there exists a chip config-
uration b that legally fires to c and d.

Proof. By assumption, there exists z such that d− c = ∆qz. Then define I = {i | zi ≥ 0} and J = {j | zj <
0}. One can imagine I to be the “positive part” of z and J is the “negative part” of z. Note that I and J
are subsets of {1, . . . , n}. Now, clearly

d− c =
∑
i∈I

zi∆qei +
∑
j∈J

zj∆qej .

Hence by reorganizing

d +
∑
i∈I

zi∆qei = c−
∑
j∈J

zj∆qej

and if we define b to be equal to the above vector, then b legally fires to both c and d.

Now we are prepared to show the desired result.

Existence of a critical configuration in each equivalence class: Let z ∈ Zn be such that ∆qz > 0
(via the lemma above). Then, clearly ct = c + t∆qz is firing-equivalent to c for any t (since ct − c = ∆qtz),
and is sufficiently large for sufficiently large t. Then stab(ct) is critical and an element of [c].

Uniqueness of a critical configuration in each equivalence class: Suppose c and d are firing-
equivalent critical configurations. Then, by the above lemma, there exists a configuration b which legally
fires to both c and d. Hence, since both c and d are stable, by global confluence they must be equal.

Corollary 11.1. On any graph G with sink q, there are only finitely many critical configurations.
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3.4 Dhar’s Burning Algorithm

Definition 22 (Superstable). A configuration is superstable if it has no nontrivial legal cluster-fires.

Suppose G has n vertices. For determining if a chip configuration c is stable we need only check if n different
firings are legal. However, determining if a chip configuration is superstable is much harder, as there are
2n different cluster-firings. The Burning Algorithm provides a less naive method for checking superstability,
using the following argument.

Definition 23 (Burning Algorithm). Let G be a finite graph with n vertices and sink q. Let c be a chip
configuration on G \ q.

Envision the chips as firefighters protecting their location. Imagine a fire burning through the graph – if a
vertex v is on fire then the fire spreads along all incident edges towards the neighbors of v. Each firefighter
can turn and stop the fire along exactly one edge. Thus, a site is protected as long as there are at least as
many firefighters (chips) as there are incident burning edges. If a site has more burning incident edges than
firefighters, then the site catches on fire and the fire spreads through towards all of its neighbors.

Theorem 12. Let G be a finite graph with sink q. Start a fire at q. A configuration is superstable if and
only if every vertex is eventually on fire.

Now, the only way for the system to change is for a new vertex to catch fire, and this can happen at most
n times. Hence we only need to make n checks, and each check only needs to consider at most n vertices
(to see if any of them have caught fire). Therefore, our method requires on the order of n2 steps, making it
substantially more efficient than the 2n steps that the naive method uses.

4 Sandpile Groups

First, consider the following observation about stabilization:

Proposition 13. For any chip configurations c and d, we have

stab(c + d) = stab(stab(c) + d).

Proof. This follows directly from global confluence.

Proposition 14. Let G be a graph with sink q and let c and d be two critical configurations of G. Then
stab(c + d) is also a critical configuration of G.

Proof. Clearly stab(c + d) is a stable configuration. Furthermore, since c is critical, then there exists c′

sufficiently large, such that stab(c′) = c. But then

stab(c + d) = stab(stab(c′) + d) = stab(c′ + d)

and c′ + d is clearly sufficiently large, so stab(c + d) can be reached from a sufficiently large configuration.
Since stab(c+d) is stable and reachable from a sufficiently large initial criterion, by definition it is critical.

Definition 24 (Sandpile Sum). The sandpile sum of two critical configurations c and d is defined as
c⊕ d = stab(c + d). As proven above, this is another critical configuration.

4.1 The Sandpile (Semi)group

Definition 25 (Semigroup). A semigroup (G, ·) (denoted by G using abuse of notation) is a set G equipped
with an associative binary operation ·, that is, a binary operation such that a · (b · c) = (a · b) · c for any
a, b, c ∈ G. Essentially, a semigroup is a group without a required identity or inverse.

Definition 26 (Sandpile Group). Given a graph G with sink q, the sandpile group S(G) on G is the
semigroup of critical configurations operated on by the sandpile sum. It is clear that this operation is
associative by the associativity of addition and Proposition 13.
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The reason why we define S(G) to be a semigroup instead of a group (despite the fact that we call it the
sandpile group) is that it’s not intuitively clear that there is a critical configuration which acts as the identity,
or that every critical configuration has an inverse critical configuration.

Notice two key facts about the sandpile (semi)group:

1. The sandpile (semi)group is finite, because there are only finitely many critical configurations on a
graph (see Corollary 11.1).

2. The sandpile (semi)group is commutative, because addition of integer vectors is commutative.

4.2 Defining the Sandpile Group using Cokernels

As we’ve seen, our definition of the sandpile group has some flaws: namely, it’s not clear that the sandpile
group is even a group. Therefore, we’ll define the sandpile group using another method, one which makes it
clear that the sandpile group is indeed a group.

Definition 27 (Sandpile Group 2). Let G be a graph with n + 1 vertices and sink q. Let ∆q : Zn → Zn

be the linear transformation given by the action of the reduced Laplacian ∆q on the canonical basis of Zn.
Then the sandpile group S(G) is defined to be coker ∆q = Zn/ im ∆q.

Clearly, this is an abelian group; it is the quotient of two finite groups. Yet this definition is identical to our
definition from the earlier section; to see why, recall that there is a unique critical configuration per firing
class. Therefore, the map S(G) → coker ∆q given by sending a critical configuration c to its firing class [c]
is an isomorphism. Hence coker ∆q ' S(G), implying that S(G) is also a group whose identity is the unique
critical configuration which is firing-equivalent to 0. Similarly, the inverse of a critical configuration c is the
unique critical configuration firing-equivalent to −c.

4.3 Computing the Sandpile Group: the Smith Normal Form

Definition 28. For a non-singular integer matrix M , the Smith normal form of M is a diagonal matrix A
suh that

A = diag(d1, d1d2, . . . , d1 . . . dn) = PMQ

for invertible matrices P,Q ∈ GL(n,R) and integers di ∈ Z.

A standard result from linear algebra is that by adding integer multiples of rows and columns or inverting
the signs of rows or columns, we can turn any non-singular matrix M into its Smith normal form. Notice
that none of these operations change the image of M , and therefore do not affect the cokernel of M (either
as a rational matrix associated to a map Qn → Qn or an integer matrix associated to a map Zn → Zn).

Proposition 15. If M is a non-singular n×n integer matrix and the Smith normal form of M is diag(e1, . . . , en),
then the cokernel of diag(e1, . . . , en) is isomorphic to (Z/e1Z)⊕ · ⊕ (Z/enZ), implying

cokerZ(M) ' (Z/e1Z)⊕ · ⊕ (Z/enZ).

In particular we can apply this theorem to M = ∆q to compute the sandpile group.

4.4 Computing the Identity of the Sandpile Group

Proposition 16. The identity element cid of the sandpile group of critical elements is given by

cid = stab(2cmax − stab(2cmax)).

Proof. The configuration cid is (1) critical and (2) clearly firing-equivalent to the all zeroes configuration,
since cid = stab(2cmax − stab(2cmax)) is firing-equivalent to 2cmax − stab(2cmax), which is firing-equivalent
to 2cmax − 2cmax = 0. Since critical configurations are unique per firing equivalence class and 0 belongs to
the identity class of cokerZ(∆q), this is must be the identity configuration.
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4.5 Example: Identities of Sandpile Groups as Raster Images

Finally we are prepared to discuss the images presented on my website here.

First, let’s define a “grid graph” which naturally makes a raster image into a graph.

Definition 29 (Grid Graph). The n×n grid graph is defined to be the graph G with n2 + 1 vertices. n2 of
these vertices are arranged in a grid, with vertices that are horizontally or vertically adjacent connected by
an edge. The final vertex is the sink vertex q of G, and every boundary edge is connected to the sink either
once (for non-corner vertices) or twice (for corner vertices), so that every non-sink vertex of G has degree 4.

For example, following is the 5× 5 grid graph (the sink vertex is not pictured, but can be envisioned as the
endpoint of all edges with just one endpoint):

An n× n raster image can be interpreted as an n× n grid graph by letting each pixel be the corresponding
vertex and letting the color of the pixel correspond to how many chips are on the vertex. Then, using the
formula from Proposition 16, we can compute the identity element of the grid graph using the code here.

On the next page are the identity elements of grid graphs of various sizes and colored with various color
schemes (first the standard scheme from Klivan’s textbook, a scheme which I chose, and then a scheme
selected by my friend). The following legend describes these color schemes:

• Color Scheme 1: Blue (0 grains of sand), Light Blue (1 grain of sand), Yellow (2 grains of sand),
Maroon (3 grains of sand).

• Color Scheme 2: Neon Blue (0 grains of sand), Medium Blue (1 grain of sand), Dark Blue (2 grains of
sand), Midnight Blue (3 grains of sand).

• Color Scheme 3: Neon Pink (0 grains of sand), Light Purple (1 grain of sand), Dark Purple (2 grains
of sand), Midnight Blue (3 grains of sand).

Figure 1: 10× 10 Identity Elements
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Figure 2: 25× 25 Identity Elements

Figure 3: 50× 50 Identity Elements

Figure 4: 100× 100 Identity Elements

Figure 5: 200× 200 Identity Elements
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Figure 6: 500× 500 Identity Elements

Figure 7: 1000× 1000 Identity Elements

Figure 8: 2000× 2000 Identity Elements
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