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1 Measurability and the Lebesgue Measure

1.1 σ-Algebras and Probability Spaces

Definition 1.1 (σ-Algebra). Let Ω be a set. A σ-algebra F on Ω is a collection of subsets of Ω such that

(1) ∅ ∈ F ,

(2) A ∈ F ⇒ Ac ∈ F .

(3) If A1, A2, A3, . . . ∈ F , then
⋃∞

i=1 Ai ∈ F .

If the third condition is relaxed to only closure under finite unions (that is, A1, . . . , An ∈ F implies
⋃n

i=1 Ai ∈
F ), then F is called an algebra.

Example 1.2. For any Ω, both the power set P(Ω) and the set {∅,Ω} are σ-algebras.

Proposition 1.3. Let {Fλ}λ∈Λ be a collection of σ-algebras on Ω. Then
⋂

λ∈Λ Fλ is a σ-algebra on Ω.

Proof. Left as an exercise to the reader.

Definition 1.4 (Generating σ-Algebras). Let A be a collection of subsets of Ω. Then, the σ-algebra
generated by A , denoted σ(A ), is defined to be the intersection of all σ-algebras containing A . Equivalently,
σ(A ) is the set of all subsets of Ω which can be obtained by a countable number of complements and unions.

Definition 1.5 (Borel σ-Algebra). The Borel algebra B(R) is the σ-algebra generated by all open subsets
of R. This is equal to the σ-algebra generated by all open intervals, closed subsets, closed intervals, etc. The
Borel algebra B(Rn) is defined analogously.

Definition 1.6 (Measurable Space). A measurable space (Ω,F ) is a set Ω and a σ-algebra F on Ω.

Definition 1.7 (Measure). For a measurable space (Ω,F ), a measure µ : F → [0,∞] satisfies

(1) µ(∅) = 0,

(2) if A1, A2, . . . are disjoint, then µ (
⋃∞

i=1 Ai) =
∑∞

i=1 µ(Ai).

Furthermore, if µ(Ω) = 1, then µ is called a probability measure.

Definition 1.8 (Measure Space). A triple (Ω,F , µ) of a set Ω, a σ-algebra F on Ω, and a measure µ on
F is called a measure space. If µ is a probability measure, then the triple is called a probability space.

Definition 1.9 (Events). If (Ω,F , µ) is a probability space, then elements of F are called events.

The following properties of measure spaces are universally used in calculations:

Lemma 1.10. Let (Ω,F , µ) be a measure space and A ⊆ B be measurable. Then µ(A) ≤ µ(B).

Proof. Let A1 = A, A2 = B \ A, and An = ∅ for n ≥ 3. Then µ(B) = µ(
⋃∞

i=1 Ai) =
∑∞

i=1 µ(Ai) =
µ(A1) + µ(A2) ≥ µ(A1) = µ(A). The result follows.

Lemma 1.11. Let (Ω,F , µ) be a finite measure space (i.e., µ(Ω) < ∞). Then, for any A,B ∈ F , µ(A∪B) =
µ(A) + µ(B)− µ(A ∩B).

Proof. Consider A and B \ (A∩B); they are disjoint, by definition, and have union A∪B. Thus, µ(A∪B) =
µ(A) + µ(B \ A ∩ B). On the other hand, A ∩ B and B \ (A ∩ B) are disjoint and have union B, so
µ(B) = µ(A ∩ B) + µ(B \ A ∩ B) ⇔ µ(B \ A ∩ B) = µ(B)− µ(A ∩ B). In particular, the rearrangement is
valid because all measures are finite. Combining the two equations yields

µ(A ∪B) = µ(A) + µ(B)− µ(A ∩B).

More generally, we have the first and second-degree union bounds:
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Lemma 1.12. Let (Ω,F , µ) be a measure space. Then, if A1, A2, . . . ∈ F , µ (
⋃∞

n=1 An) ≤
∑∞

n=1 µ(An).

Proof. First, define the sequence Bn = An \
⋃n−1

i=1 Ai. Notice that Bi ⊆ Ai and therefore µ(Bi) ≤ µ(Ai)
for each i. On the other hand,

⋃∞
n=1 An =

⋃∞
n=1 Bn. Finally, the Bi are pairwise disjoint. Therefore,

µ (
⋃∞

n=1 An) = µ (
⋃∞

n=1 Bn) =
∑∞

n=1 µ(Bn) ≤
∑∞

n=1 µ(An).

Lemma 1.13. Let (Ω,F , µ) be a finite measure space. Then, if A1, . . . , An ∈ F , µ (
⋃n

i=1 Ai) ≥
∑n

i=1 µ(Ai)−∑
1≤i<j≤n µ(Ai ∩Aj).

Proof. Define Bn = An \ (A1 ∪ · · · ∪An−1) for each n. Then, the Bi are disjoint, so µ (
⋃

i Bi) =
∑n

i=1 µ(Bi).
On the other hand, Bi ∪ (Ai ∩A1) ∪ · · · ∪ · · · ∪ (Ai ∩Ai−1) = Ai. Therefore, by the previous result,

µ(Bi) +

i−1∑
j=1

µ(Ai ∩Aj) ≥ µ(Ai) ⇒ µ(Bi) ≥ µ(Ai)−
i−1∑
j=1

µ(Ai ∩Aj).

Therefore,

µ

(⋃
i

Bi

)
=

n∑
i=1

µ(Bi) ≥
n∑

i=1

µ(Ai)−
n∑

i=1

i−1∑
j=1

µ(Ai ∩Aj) =

n∑
i=1

µ(Ai)−
∑

1≤i<j≤n

µ(Ai ∩Aj).

Finally, we can measure sets using limits:

Lemma 1.14. Let (Ω,F , µ) be a measure space. Then, if {An}n≥1 is a sequence of sets in F that increases
to a set A, µ(An) increases to µ(A). Similarly, if An decreases to a set A and µ(An) < ∞ for some n, then
µ(An) decreases to µ(A).

Proof. Suppose that An increases to A. Then the sequence µ(An) is increasing. Then, notice that
⋃∞

n=1 An =⋃∞
n=1 An \An−1 (where A0 := ∅), and the An \An−1 are pairwise disjoint, so

µ(A) = µ

( ∞⋃
n=1

An

)
= µ

( ∞⋃
n=1

An \An−1

)
=

∞∑
n=1

µ(An \An−1)

= lim
N→∞

N∑
n=1

µ(An \An−1) = lim
N→∞

µ

(
N⋃

n=1

An \An−1

)
= lim

N→∞
µ(AN ).

Together, these imply the desired result. The proof for decreasing sequences is similar by taking complements,
with minor modifications to handle cases of infinite measure.

1.2 Dynkin’s π-λ Theorem

Definition 1.15 (π-Systems and λ-Systems). Let Ω be a set. A collection P of subsets of Ω is called a
π-system if A,B ∈ P ⇒ A ∩B ∈ P. Similarly, a collection L of subsets of Ω is called a λ-system if

(1) Ω ∈ L ,

(2) A ∈ L ⇒ Ac ∈ L .

(3) A1, . . . , A2, · · · ∈ L are disjoint implies
⋃∞

i=1 Ai ∈ L .

Lemma 1.16. A σ-algebra is a λ-system and a π-system.

Lemma 1.17. A λ-system that is also a π-system is a σ-algebra.

Lemma 1.18. The intersection of any family of λ-systems is again a λ-system.

Definition 1.19 (Generating λ-System). Given any system A , the system λ(A ) is the intersection of all
λ-systems containing A ; by Lemma 1.18, this is a λ-system, indeed the smallest λ-system containing A .
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Lemma 1.20. If P is a π-system, then λ(P) is a π-system.

Proof. Take any A ∈ P, and let S1 = {B ∈ λ(P) | B ∩ A ∈ λ(P). It is not hard to show that S1 is a
λ-system, and it plainly contains P (yet is contained in λ(P)), so S1 = λ(P). Then, let S2 = {A ∈ λ(P) |
B ∈ λ(P) ⇒ A ∩ B ∈ λ(P)}. It is not hard to show that S2 is a λ-system, and by the previous result,
P ⊆ S2, so λ(P ) = S2. Thus, λ(P) is closed under intersection, as desired.

Theorem 1.21 (Dynkin π-λ Theorem 1). If P is a π-system, then λ(P) = σ(P).

Proof. By Lemma 1.20, λ(P) is a π-system and a λ-system, so by Lemma 1.17, λ(P) is a σ-algebra, and
therefore contains λ(P) ⊇ σ(P). On the other hand, σ(P) is a λ-system, so σ(P) ⊇ λ(P).

Theorem 1.22 (Dynkin’s π-λ Theorem 2). Let P be a π-system and L be a λ-system containing P. Then,

L ⊇ σ(P).

Proof. σ(P) = λ(P) ⊆ L .

Let us demonstrate a use of Dynkin’s π-λ Theorem. First we need an intuitive technical lemma.

Lemma 1.23. If µ is a measure on a σ-algebra F and A1, A2, · · · ∈ F are an increasing sequence with
union A, then µ(A) = limµ(Ai). Moreover, if A1, A2, . . . are a decreasing sequence with intersection A, and
µ(Ai) < ∞ for some i, then µ(A) = limµ(A) = limµ(Ai).

The proof is from the axioms of measures. For an example showing why the condition µ(Ai) < ∞ for some
i is necessary, consider the following:

Example 1.24. Let Ai = (i,∞) and µ be a length measure on R. Then limµ(Ai) = ∞ as µ(Ai) = ∞ for
each i, yet A =

⋂
i Ai = ∅ whence µ(A) = 0.

Theorem 1.25. Let P be a π-system and µ1, µ2 be measures on σ(P) that agree on P. Suppose that there
is an increasing sequence A1 ⊆ A2 ⊆ A3 · · · of elements of P whose union is Ω such that µ1(Ai) < ∞.
Then, µ1 = µ2 on σ(P).

Proof. Take any A ∈ P such that µ1(A) < ∞. Let L = {B ∈ σ(P) | µ1(A ∩ B) = µ2(A ∩ B)}.
Plainly, L contains P. Furthermore, notice that L is a λ-system. For Ω ∈ L , and if B ∈ L ,
µ1 = (A ∩ Bc) = µ1(A) − µ1(A ∩ B) = µ2(A) − µ2(A ∩ B) = µ2(A ∩ Bc), whence Bc ∈ L Finally,
suppose B1, B2, · · · ∈ L are disjoint. Then µ1 (A ∩ (

⋃∞
i=1 Bi))) = µ1 (

⋃∞
i=1 A ∩Bi)) =

∑∞
i=1 µ1(A ∩ Bi) =∑∞

i=1 µ2(A ∩Bi) = µ2 (A ∩ (
⋃∞

i=1 Bi))) whence
⋃∞

i=1 Bi ∈ L .

Thus, by Dynkin’s π-λ system, L ⊇ σ(P). Then, choose an increasing sequence A1 ⊆ A2 ⊆ A3 · · · of
elements of P whose union is Ω such that µ1(Ai) < ∞. Then, for each B ∈ σ(P),

⋃∞
i=1 Ai ∩B = B. Thus,

µ1(Ai ∩ B) converges to µ1(B), and µ2(Ai ∩ B) converges to µ2(B); yet µ1(Ai ∩ B) = µ2(Ai ∩ B) for each
i. Thus, µ1(B) = µ2(B). The result follows.

Example 1.26. Let Ω = R, and P be the collection of bounded open intervals. Then, σ(P) = B(R).
Suppose that µ1 and µ2 are measures on B(R) such that for any a < b, then µ1((a, b)) = µ2((a, b)) = b− a.
Then µ1 = µ2 by considering the increasing sequence An = (−n, n) and applying the previous theorem. This
demonstrates that there is a unique natural “length” measure on R.

Definition 1.27 (Monotone Class). Let Ω be a set. A collection C of subsets of Ω is called a monotone class
if it is closed under monotone limits, that is, if A1 ⊆ A2 ⊆ · · · ∈ C then

⋃
i Ai ∈ C and if A1 ⊇ A2 ⊇ · · · ∈ C

then
⋂

i Ai ∈ C .

Theorem 1.28 (Monotone Class Theorem). If A is an algebra and C is a monotone class containing A ,
then C ⊇ σ(A ).
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Proof. First, notice that the intersection of any family of monotone classes is another monotone class.
Therefore, given any algebra A , there is a smallest monotone class M containing A . I claim that M is a
λ-system. Obviously, M is closed under increasing unions by definition and nonempty since it contains A :
it suffices to show that it is closed under complements. To see why, define fix some S ∈ A . Then, define

MS = {T ∈ M | S \ T and T \ S ∈ M }.

It is easy to see that MS is a monotone class. Furthermore, A ⊆ MS , so indeed M ⊆ MS and M = MS .
In other words, for any S ∈ A and T ∈ M , S \T and T \S ∈ M . Now, suppose that T ∈ M . Then, by the
previous remark, MT contains A . Yet MT is still a monotone class, so MT contains M and M = MT for
any T ∈ M . In other words, for any S, T ∈ M , S \ T and T \ S both belong to M , so M is closed under
complements, as desired.

Then, since M is a λ-system, and A is an algebra (and therefore a π-system), the Dynkin π-λ theorem
yields that M ⊇ σ(A ). Yet C contains M , so C ⊇ M ⊇ σ(A ), as desired.

1.3 Outer Measures

Definition 1.29 (Outer Measure). Let Ω be any set. A function ϕ : 2Ω → [0,∞] is called an outer measure
if ϕ(∅) = 0, ϕ(A) ≤ ϕ(B) when A ⊆ B, and for any A1, A2, · · · ⊆ Ω, ϕ (

⋃
i Ai) ≤

∑
i ϕ(Ai).

Definition 1.30 (ϕ-measurable). Let ϕ be an outer measure on a set Ω. A subset A ⊆ Ω is called ϕ-
measurable if ∀B ⊆ Ω, ϕ(B) = ϕ(B ∩A) + ϕ(B ∩Ac).

Theorem 1.31. Let F be the collection of all ϕ-measurable subsets of Ω. Then F is a σ-algebra and ϕ is
a measure on F .

Proof. The proof is a series of straightforward lemmas.

Lemma 1.32. The collection F is an algebra.

Lemma 1.33. If A1, . . . , An ∈ F are disjoint and E ⊆ Ω, then

ϕ(E ∩ (A1 ∪ · · · ∪An)) =

n∑
i=1

ϕ(E ∩Ai).

By the previous two lemmas, we can demonstrate

Lemma 1.34. If A1, A2, . . . is a sequence of sets in F increasing to a set A ⊆ Ω, then for any E ⊆ Ω,

ϕ(E ∩A) ≤ lim
n→∞

ϕ(E ∩An).

From here, the conclusion follows. Indeed, let A1, A2, · · · ∈ F and let A =
⋃

i Ai. For each n, let Bn =⋃n
i=1 Ai; this belongs to F by the first lemma. Then, for any E ⊆ Ω and any n,

ϕ(E) = ϕ(E ∩Bn) + ϕ(E ∩Bc
n) ≥ ϕ(E ∩Bn) + ϕ(E ∩Ac)

Yet the third lemma demonstrates that limn→∞ ϕ(E∩Bn) ≥ ϕ(E∩A). Thus, ϕ(E) ≥ ϕ(E∩A)+ϕ(E∩Ac);
the other side of the inequality is immediate from subadditivity. Thus, ϕ(E) = ϕ(E ∩ A) + ϕ(E ∩ Ac), so
A ∈ F , as desired. This, with the first lemma, shows that F is a σ-algebra.
It then suffices to show that ϕ is a measure on F . For this, take any disjoint collection A1, A2, · · · ∈ F , and
define Bn =

⋃n
i=1 Ai as before. Then, by Lemma 1.4.5,

ϕ(B) ≥ ϕ(Bn) =

n∑
i=1

ϕ(Ai).

Thus, by taking n → ∞, ϕ(B) ≥
∑

i ϕ(Ai). The opposite inequality is given by subadditivity. Thus, ϕ is a
measure on F , as desired.

5



1.4 Carathéodory’s Extension Theorem

Theorem 1.35 (Carathéodory’s Extension Theorem). Let A be an algebra of subsets of a set Ω. Let µ be
a measure on A . Then, µ has an extension to σ(A ). Moreover, the extension is unique if µ is σ-finite on
A , meaning that ∃A1, A2, · · · ∈ A such that µ(Ai) < ∞ for all i and Ai ↑ Ω.

Proof. Uniqueness follows immediately from Theorem 1.25, as algebras are π-systems. For existence, define
µ∗ : 2Ω → [0,∞] as follows: for any A ⊆ Ω, let

µ∗(A) = inf

{ ∞∑
i=1

µ(Ai)

∣∣∣∣Ai ∈ A ,

∞⋃
i=1

Ai ⊇ A

}
The proof then requires two straightforward lemmas:

Lemma 1.36. µ∗ is an outer measure.

Lemma 1.37. For any A ∈ A , µ∗(A) = µ(A).

Then, to conclude, let A ∗ be the set of all µ∗-measureable sets. Then, by Theorem 1.31, A ∗ is a σ-algebra
and µ∗ is a measure on A ∗. Thus, it suffices to show that A ⊆ A ∗; that is, that any A ∈ A is µ∗-measurable.

For this, take any A ∈ A and E ⊆ Ω. Then, for any sequence A1, A2, . . . of elements of A that cover E,
{A ∩Ai}∞i=1 is a cover for E ∩A and {Ac ∩Ai}∞i=1 is a cover for E ∩Ac. Thus,

µ∗(E ∩A) + µ∗(E ∩Ac) ≤
∞∑
i=1

(µ(A ∩Ai) + µ(Ac ∩Ai)) =

∞∑
i=1

µ(Ai).

Taking the infimum over all choices of {Ai}∞i=1, we obtain that µ∗(E∩A)+µ∗(E∩Ac ≤ µ∗(E), as desired.

1.5 Construction of the Lebesgue Measure

Let C be the collection of all sets of the form either (a, b] for some a, b ∈ R or (a,∞) for a ∈ R or (−∞, b]
for b ∈ R or R. Let A be the collection of all finite disjoint unions of elements of C . Then, A is an algebra
which generates the Borel σ-algebra of R.

Define a functional λ : A → R by

λ

(
n⋃

i=1

(ai, bi] ∩ R

)
:=

n∑
i=1

(bi − ai).

In other words, λ measures the length of an element of A . Clearly, λ is finitely additive on A and monotone.

Lemma 1.38. For any A1, . . . , An ∈ A and any A ⊆ A1 ∪ · · · ∪An, λ(A) ≤
∑n

i=1 λ(Ai).

Proof. Let B1 = A1 and Bi = Ai \ (A1 ∪ · · · ∪ Ai−1) for 2 ≤ i ≤ n. Then B1, . . . , Bn are disjoint and have
union A1, . . . , An. Then, λ(A) =

∑n
i=1 λ(A ∩Bi) ≤

∑n
i=1 λ(Bi) ≤

∑n
i=1 λ(Ai).

Then, we can prove the following facts about λ.

Proposition 1.39. The functional λ defined above is a σ-finite measure on A .

Proof. Suppose that A1, A2, · · · ∈ A is a sequence of disjoint elements in A with union A ∈ A . Since each
element of A is a finite disjoint union of such intervals, it suffices to show the case when A = (a, b] ∩R and
Ai = (ai, bi] ∩ R for each i. Assume that a < b. Now, suppose that a and b are both finite.

Take any δ > 0 such that a + δ < b, and take any ε > 0. Then [a + δ, b] ⊆
⋃∞

i=1(ai, bi + 2−iε); since

[a+ δ, b] is compact, there exists some k such that [a+ δ, b] ⊆
⋃k

i=1(ai, bi + 2−iε). Therefore, by the above

lemma, we have b− a− δ ≤
∑k

i=1(bi + 2−iε− ai) ≤ ε+
∑∞

i=1(bi − ai). By driving ε and δ to 0, we obtain
b− a ≤

∑∞
i=1(bi − ai). Finite additivity and monotonicity yields the other direction. Finally, if one or both

of a and b are infinite, it suffices to take finite a′, b′ such that (a′, b′] ⊆ (a, b], and take the limit.
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Corollary 1.39.1. The functional λ has a unique extension to a measure on B(R).

Definition 1.40 (Lebesgue Measure). The unique extension of λ given by the above corollary is called the
Lebesgue measure on the real line.

One can define the Lebesgue measure on Rn for general n by considering disjoint unions of products of
half-open intervals and then repeating the above development. We shall do that now.

Let A be the set of all subsets of Rd that are finite disjoint unions of half-open cubes of the form (a1, b1]×
· · · × (ad, bd] ∩ Rd, where −∞ ≤ a ≤ b ≤ ∞. Then, A is an algebra of subsets of R which generates a
σ-algebra on Rd which we call the Borel σ-algebra on Rd. Define λ : A → R by

λ

(
n⋃

i=1

(ai1, bi1]× · · · (aid, bid] ∩ Rd

)
=

n∑
i=1

(bi1 − ai1)(bi2 − ai2) · · · (bid − aid).

Obviously, λ satisfies finite additivity and therefore monotonicity.

Lemma 1.41. For any A1, . . . , An ∈ A and any A ⊆ A1 ∪ · · · ∪An, λ(A) ≤
∑

λ(Ai).

Proof. Let Bi = Ai \ (A1 ∪ · · ·Ai−1). Then B1, . . . , Bn are disjoint with union
⋃n

i=1 Ai. Then, as desired,

λ(A) =

n∑
i=1

λ(A ∩Bi) ≤
n∑

i=1

λ(Bi) ≤
n∑

i=1

λ(Ai).

Lemma 1.42. The functional λ defined above is a σ-finite measure on A .

Proof. σ-finitude is trivial, so it suffices to show countable additivity. Indeed, suppose that A ∈ A is a count-
able disjoint union of elements A1, A2, · · · ∈ A . Then we seek to show that λ(A) =

∑∞
i=1 λ(Ai). Of course, it

suffices to show that this is true when A = (a1, b1]×· · ·×(ad, bd]∩Rd∩R and Ai = (ai1, bi1]×· · · (aid, bid]∩Rd

for each i, since any element of A is a finite disjoint union of such cubes.

Now, first suppose that −∞ < aj < bj < ∞ for each j. Then, take any δ > 0 such that aj + δ < bj for each
j, and any ε > 0. Then [a1 + δ, b1]× · · · × [ad + δ, bd] ⊆

⋃
i≥1(ai1, bi1 + 2−iε)× · · · × (aid, bid + 2−iε). Now,

since [a1 + δ, b1]× · · · × [ad + δ, bd] is compact, it is contained in the union of finitely many (ai1, bi1 +2−iε)×
· · · × (aid, bid + 2−iε). Thus, there exists some k such that

[a1 + δ, b1]× · · · × [ad + δ, bd] ⊆
k⋃

i=1

(ai1, bi1 + 2−iε)× · · · × (aid, bid + 2−iε).

Thus, by the preceding lemma,

(b1 − a1 − δ) · · · (bd − ad − δ) ≤
k∑

i=1

(bi1 + 2−iε− ai1) · · · (bid + 2−iε− aid) ≤ ε+

∞∑
i=1

(bi1 − ai1) · · · (bid − aid).

By driving δ and ε to 0, we obtain (b1 − a1) · · · (bd − ad) ≤
∑∞

i=1(bi1 − ai1) · · · (bid − aid). On the other

hand, for any k, finite additivity and monotonicity of λ implies that (b1− a1) · · · (bd− ad) = λ(A) ≥
∑k

i=1 =∑k
i=1(bi1 − ai1) · · · (bid − aid) whence λ(A) = (b1 − a1) · · · (bd − ad) ≥

∑∞
i=1(bi1 − ai1) · · · (bid − aid). Thus

we have proven countable additivity when the aj and bj are finite. On the other hand, if either aj or bj is
infinite, choose finite a′j , b

′
j such that (a′j , b

′
j ] ⊆ (aj , bj ]∩R for each j. Repeating the above steps, we achieve

(b′1 − a′1) · · · (b′d − a′d) =

∞∑
i=1

(bi1 − ai1) · · · (bid − aid)

for any finite a′ > a and b′ < b. Since this holds for all such a′j , b
′
j , the equality (b1 − a1) · · · (bd − ad) =∑∞

i=1(bi1 − ai1) · · · (bid − aid) still holds.
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Corollary 1.42.1. The function λ has a unique extension to a measure on the Borel σ-algebra on Rd.

Definition 1.43 (Lebesgue Measure). The unique extension of λ given by the above corollary is called the
Lebesgue measure on Rd.

For an example computation of Lebesgue measure in higher dimensions, we consider the example of a line.

Example 1.44. A straight line in R2 has measure zero.

Proof. First, notice that by swapping the x and y-coordinates, we may assume that the line L is not vertical
and therefore can be written in the form y = f(x) = mx+ b for some m, b ∈ R. Then, for any k, let Fk be
the following family of boxes:

Fk =

{[
n+

l

2k+n
, n+

l + 1

2k+n

]
×
[
f

(
n+

l

2k+n

)
, f

(
n+

l + 1

2k+n

)] ∣∣∣∣ n ∈ Z, 0 ≤ l ≤ 2k+n − 1

}
For any k, Fk covers the entirety of L. On the other hand, the section of Fk to do with a fixed n ∈ Z
(that is, the section covering [n, n + 1]) has the area 2k+n

(
1

2k+n · m
2k+n

)
= m

2k+n . Therefore, the area of

Fk is m
2k

∑
n∈Z 2

n = 3m
2k

. Yet then µ(L) ≤ µ (Fk) = 3m
2k

for each k, whence by taking k → ∞ we obtain
µ(L) = 0.

1.6 Completion of Measure Spaces

Definition 1.45 (Complete σ-Algebra). Let (Ω,F , µ) be a measure space. µ is said to be complete if
whenever A ∈ F , µ(A) = 0, and B ⊆ A, then B ⊆ F .

Proposition 1.46. Let (Ω,F , µ) be a measure space. Then there exists a σ-algebra F ′ ⊇ F , and an
extension of µ to F ′, such that F ′ is a complete σ-algebra.

Proof. Define an outer measure µ∗ and a σ-algebra A ∗ as in the proof of Carathéodory’s extension theorem.
Then, A ∗ is complete with respect to µ∗.

In fact, the completion of the Borel σ-algebra of R is the Lebesgue σ-algebra. The Lebesgue measure is
defined on this larger σ-algebra, but we work with the Borel σ-algebra most of the time. For example, when
we say that a function defined on R is measurable, we mean Borel measurable. On the other hand, abstract
probability spaces will usually be assumed to be complete.

1.7 Lebesgue vs. Borel Sets

Proposition 1.47. A set is Lebesgue measurable if and only if it is the union of a Borel set and a null set.

Proof. First, we begin with some straightforward lemmas.

Lemma 1.48. Suppose that A is Lebesgue measurable. Then m(A) = inf{m(U) | U ⊇ A open}.

Corollary 1.48.1. Suppose that A is Lebesgue measurable. Then m(A) = sup{m(V ) | V ⊆ V closed}.

If A is the union of a Borel set and a null set, then A is clearly Lebesgue measurable. Therefore, it suffices
to show that if A is Lebesgue measurable, then it is the union of a Borel set and a null set.

For this, consider first the case where m(A) < ∞. Then, by the above corollary, there exists a sequence of
sets V1 ⊆ V2 ⊆ · · · such that limi→∞ m(Vi) = m(A). Then, if V is the Borel set

⋃∞
i=1 Vi, m(V ) = m(A).

Then V \A is measurable as the intersection of the Borel set V and the measurable set Ac, and furthermore,
since m(A) = m(V ) < ∞, m(V \A) = 0. Thus, A is a union of the Borel set V and the null set A.

Now suppose that A is an arbitrary Lebesgue measurable set. Let An be the intersection of A with the open
ball Bn(0) of radius n around the origin. By our above work, An = Vn ∩Wn for some Borel set Vn and null
set Wn. But then V =

⋃∞
i=1 Vi is Borel, and W =

⋃∞
i=1 Wi is null, and A = V ∩W .
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2 Measurable Functions

Definition 2.1 (Measurable Function). Let (Ω,F ) and (Ω′F ′) be two measurable spaces. A function
f : Ω → Ω′ is called measurable if f−1(A) ∈ F for every A ∈ F ′. It is easy to see that the composition of
measurable functions is measurable.

One way to simplify the process of computing measurability is the following:

Lemma 2.2. Let (Ω,F ) and (Ω′,F ′) be two measurable spaces and f : Ω → Ω′ be a function. Suppose
that there is a set A ⊆ F ′ that generates F ′ and suppose that f−1(A) ∈ F for all A ∈ A . Then f is
measurable.

Proof. The set of all B ⊆ Ω′ such that f−1(B) ∈ F is a σ-algebra, and it contains A , so it contains
σ(A ) = F ′), as desired.

Definition 2.3 (Borel σ-Algebra of a Topological Space). The Borel σ-algebra on Ω is the σ-algebra gen-
erated by the open sets.

Proposition 2.4. Suppose that Ω and Ω′ are topological spaces, and F and F ′ are their Borel σ-algebras.
Then any continuous function from Ω into Ω′ is measurable.

Proof. Apply the preceding lemma with A being the set of all open subsets of Ω′.

Other measurable functions include:

1. Sums and products of measurable functions.

2. Right-continuous or left-continuous functions.

3. Monotone functions.

4. Lower- or upper-semicontinuous functions.

5. The infimum or supremum of a series of measurable functions.

6. The limit infimum or supremum of a series of measurable functions.

7. The pointwise limit of a series of measurable functions.

8. The sum of an infinite sequence of [0,∞]-valued measurable functions.

The proof of these facts is left as an exercise to the reader.

2.1 Lebesgue Integration

We define Lebesgue integration in three steps. First, given a simple function f =
∑n

i=1 ai1Ai withA1, . . . , An ∈
F disjoint and a1, . . . , an ≥ 0, we define

∫
fdµ =

∑n
i=1 aiµ(Ai). Next, consider any measurable function f :

Ω → [0,∞). Let SF+(f) = {g | g non-negative simple functions∀ω ∈ Ω}. Then
∫
fdµ = supg∈SF+(f)

∫
gdµ.

Finally, consider any measurable function f : Ω → R. Let f+(ω) be equal to max(f, 0) and f−(ω) =
−min(f, 0). Then f = f+ − f−; if at least one of f+dµ and

∫
f−dµ is finite, we define

∫
fdµ =

∫
f+dµ −∫

f−dµ and say that the integral exists. If indeed both quantities are finite, then we say that f is integrable.

Lemma 2.5. If 0 ≤ f ≤ g everywhere, then
∫
fdµ ≤

∫
gµ.

2.2 Properties of the Lebesgue Integral

Lemma 2.6. Let s : Ω → [0,∞) be a measurable simple function. For each S ∈ F , let ν(S) =
∫
S
sdµ. Then

ν is a measure on (Ω,F ).
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Proof. Suppose that s =
∑n

i=1 ai1Ai . Since ν(∅) = 0 by definition, it suffices to show that ν is countably
additive. Then suppose that S1, S2, . . . is a sequence of disjoint sets in F with union S. Then

ν(S) =

n∑
i=1

aiµ(Ai ∩ S) =

n∑
i=1

 ∞∑
j=1

µ(Ai ∩ Sj)

 =

∞∑
j=1

n∑
i=1

aiµ(Ai ∩ Sj) =

∞∑
j=1

ν(Sj).

Theorem 2.7 (Monotone Convergence Theorem). Suppose that {fn}n≥1 is a sequence of non-negative
measurable functions on Ω increasing pointwise to a limit function f . Then

∫
fµ = limn→∞

∫
n
dµ.

Proof. Since f ≥ fn for every n, we have
∫
fdµ ≥ lim

∫
fndµ. On the other hand, consider s ∈ SF+(f). Let

ν be as in the previous lemma and fix α ∈ (0, 1). Let Sn = {ω | αs(ω) ≤ fn(ω)}. These sets are measurable,
increasing with n, and increase to all of Ω. Then

∫
sdµ = ν(Ω) = limn→∞ ν(Sn) = limn→∞

∫
Sn

sdµ. Yet

αs ≤ fn on Sn, and since s is simple,
∫
Sn

αsdµ = α
∫
Sn

sdµ. Therefore,

α

∫
Sn

sdµ =

∫
Sn

αsdµ ≤
∫
Sn

fndµ ≤
∫
Ω

fndµ.

Thus, α
∫
sdµ ≤ lim

∫
fndµ, whence

∫
sdµ ≤ lim

∫
fndµ, whence

∫
fdµ ≤ lim

∫
fndµ.

Proposition 2.8. Given any measurable function f : Ω → [0,∞], there is a sequence of nonnegative simple
functions increasing pointwise to f .

Proof. Let fn(ω) = min{n, ⌊fn2n⌋ 2−n}. The result follows.

Proposition 2.9 (Linearity of the Integral). If f and g are two integrable functions from Ω into R∗, then
for any α, β ∈ R, the function αf + βg is integrable and

∫
(αf + βg)dµ = α

∫
fµ + β

∫
gµ. Moreover, if f

and g are measurable functions from Ω into [0,∞], then
∫
(f + g)dµ =

∫
fµ +

∫
gdµ, and for any α ∈ R,∫

αfµ = α
∫
fµ.

Proof. First demonstrate the result for simple functions, then for non-negative measurable functions using
the monotone convergence theorem, and then for all measurable functions using the traditional decomposition
f = f+ − f−. Each step in this decomposition is relatively straightforward.

Lemma 2.10 (Fatou’s Lemma). Let (Ω,F , µ) be a measure space. Let {fn}n≥1 be a sequence of measurable
functions from Ω into [0,∞]. Then,

∫
lim infn→∞ fndµ ≤ lim infn→∞

∫
fndµ.

Proof. Let gn = inff≥n fk. Then gn is an increasing sequence of nonnegative functions converging to f =
lim infn→∞ fn = limn→∞ gn By the Monotone Convergence Theorem,

∫
fdµ = limn→∞

∫
gndµ. But gn ≤ fk

everywhere for all k ≥ n. Thus
∫
gndµ ≤

∫
fkdµ for all k ≥ n. But this implies

∫
gndµ ≤ infk≥n

∫
fkdµ.

But then limn→∞
∫
gndµ ≤ limn→∞

∫
fkdµ = lim infn→∞

∫
fndµ.

Theorem 2.11 (Dominated Convergence Theorem). Let (Ω,F , µ) be a measure space. Let {fn}n≥1 be a
sequence of measurable functions from Ω into R, converging pointwise to f : Ω → R. Suppose that there
exists a measurable function h : Ω → [0,∞) such that h is integrable and |fn(ω)| ≤ h(ω) for all n, ω. Then∫
fµ = limn→∞

∫
fndµ.

Proof. Let gn = fn + h. Since |fn| ≤ h everywhere, gn ≥ 0 everywhere. Then, by Fatou’s Lemma,∫
lim inf gndµ ≤ lim inf

∫
gndµ =

∫
fdµ+

∫
hdµ ≤ lim inf

(∫
fndµ+

∫
hdµ

)
= lim inf

∫
fndµ+

∫
hdµ.

Thus
∫
fdµ ≤ lim inf

∫
fndµ. Next, let gn = h − fn; repeating the process, we find that lim sup

∫
fndµ ≤∫

fdµ, and then combining the two results yields the desired product.

Corollary 2.11.1. Under the hypothesis of the DCT, we also have limn→∞ |fn − f |dµ = 0.
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Finally, to apply most of our familiar results about integration.

Proposition 2.12. Let [a, b] be a closed interval in R, and let f : [a, b] → R be a continuous function. Let

λ be a Lebesgue measure on [a, b]. Show that
∫
fdλ is equal to the Riemann integral

∫ b

a
f(x)dx.

Proof. First, notice that the minimum and maximum of continuous functions are continuous, so f+ and f−

are both continuous. Then, notice that
∫
fdλ =

∫
f+dλ−

∫
f−dλ and

∫ b

a
f(x)dx =

∫ b

a
f+(x)dx−

∫ b

a
f−(x)dx.

Therefore, if we can establish the result in the case that f is nonnegative, then the result follows in the gen-
eral case. Thus, we may assume that f is non-negative.

Suppose that f is continuous. Then,∫ b

a

f(x) = lim
maxk(xk−xk−1)→0

n∑
k=1

f(x∗
k)(xk − xk−1)

where a = x0 ≤ x1 ≤ · · · ≤ xn = b is a sequence of points in [a, b] and x∗
k ∈ [xk, xk−1] for each k. Now, fix

ε > 0. Then, since continuous functions are uniformly continuous on closed intervals, there exists some δ
such that whenever x, y ∈ [a, b], |x− y| < δ implies |f(x)− f(y)| < ε

2(a−b) . Furthermore, there exists a pair

of sequences x1 ≤ · · · ≤ xn and x∗
1, . . . , x

∗
n such that maxk(xk − xk−1) < δ and∣∣∣∣∣

∫ b

a

f(x)−
n∑

k=1

f(x∗
k)(xk − xk−1)

∣∣∣∣∣ < ε

2
.

Then, it follows that∫ b

a

f(x)− ε ≤
n∑

k=1

f(x∗
k)(xk − xk−1)−

ε

2
=

n∑
k=1

f(x∗
k)(xk − xk−1)−

n∑
k=1

ε

2(a− b)
(xk − xk−1)

=

n∑
k=1

(
f(x∗

k)−
ε

2(a− b)

)
(xk − xk−1) ≤

n∑
k=1

inf
x∈[xk−1,xk]

f(x)(xk − xk−1).

But g = infx∈[xk−1,xk] f(x) is a simple function with integral
∑n

k=1 infx∈[xk−1,xk] f(x)(xk − xk−1). Thus,∫ b

a

f(x)dx− ε ≤
n∑

k=1

inf
x∈[xk−1,xk]

f(x)(xk − xk−1) =

∫
gdλ ≤ sup

g∈SF+

∫
gdλ ≤

∫
fdλ

given that g ≤ f by definition. Therefore, for any ε > 0, we have
∫ b

a
f(x)dx− ε ≤

∫
fdλ whence by driving

ε → 0, we obtain
∫ b

a
f(x) ≤

∫
fdλ.

On the other hand, fix any simple function g ≤ f defined on [a, b]. Let y0, y1, . . . , yn be the points at
which g changes value. Then, for any j, define the sequence xj to be given by subdividing each interval

in the sequence y into j parts, and let xj∗ be the sequence given by defining xj∗
k =

xj
k−xj

k−1

2 . Then as

j → ∞,maxk(x
j
k − xj

k−1) → 0. Thus,∫
gdλ ≤

∑
f(xj∗k)(xj

k − xj
k−1) = lim

maxk(xk−xk−1)→0

n∑
k=1

f(x∗
k)(xk − xk−1) =

∫ b

a

f(x).

But then, by taking the supremum over all simple functions g ≤ f , we obtain
∫
fdλ ≤

∫ b

a
f(x), as desired.

Combining this with the result of the preceding paragraph yields the desired result
∫
fdλ ≤

∫ b

a
f(x).

2.3 “Almost Everywhere”

Definition 2.13 (Almost Everywhere). Given a measure space (Ω,F , µ), an event A ∈ F is said to “happen
almost everywhere (a.e.)” (or, in probability theory, almost surely) if µ(Ac) = 0.
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For example, we say that f = g almost everywhere if the set of points at which they are different is null.

Proposition 2.14. Let f : Ω → [0,∞] be a measurable function. Then
∫
fdµ = 0 if and only if f = 0

almost everywhere.

Proof. If f = 0 almost everywhere, then it is clear the integral of any simple function g ≤ f is 0, so
∫
fdµ = 0.

On the other hand, suppose that µ(f−1((0,∞])) > 0. Then,

µ(f−1((0,∞])) = µ

( ∞⋃
n=1

{f−1((1/n,∞])

)
= lim

n→∞
µ(f−1((1/n,∞]) > 0.

But then, for some n, µ(f−1((1/n,∞])) > 0. Yet then we obtain the desired result:∫
fµ ≥

∫
f1Andµ ≥

∫
n−11Andµ = n−1µ(An) > 0.

Any result about integration can usually have its hypotheses replaced with almost-everywhere versions of
these hypotheses to get maximally general results, as the above theorem shows precisely that null sets are
the largest sets on which functions can be modified without changing their integrals.

2.4 Finite-Dimensional Product Spaces

Definition 2.15 (Product σ-Algebra). Let (Ω1,F1), . . . , (Ωn,Fn) be measurable spaces. Let Ω = Ω1 ×
· · ·×Ωn. Then, the product σ-algebra F (often denoted F1×· · ·×Fn by abuse of notation) on Ω is defined
to be the σ-algebra generated by sets of the form A1 × · · · ×An, where Ai ∈ Fi for each i.

Proposition 2.16 (Product Measure). Let Ω and F be as above. Then, if Ωi is endowed with a σ-finite
measure µi for each i, there is a unique measure µ on Ω which satisfies, for any Ai ∈ Fi,

µ(A1 × · · · ×An) =

n∏
i=1

µi(Ai).

Proof. Now, the collection of finite disjoint unions of sets of the form A1 × · · · × An form an algebra.
Therefore, by Carathédory’s Theorem, it suffices to show that µ, as defined above, is a measure on this alge-
bra. We prove this by induction on n; the base case n = 1 is obvious, so assume that the result holds for n−1.

Therefore, take any rectangular set A1×· · ·×An. Suppose that this set is a disjoint union of Ai,1×· · ·×Ai,n

for i = 1, 2, . . . where Ai,j ∈ Fj for each i, j. Then, it suffices to show that

µ(A1 × · · ·×) =

∞∑
i=1

(Ai,1 × · · · ×Ai,n).

Now, take x ∈ A1 × · · · × An−1. Let I = {i | x ∈ Ai,1 × · · · × Ai,n−1}. Then µn(An) =
∑

i∈I µn(Ai,n). On
the other hand, if x ̸∈ A1 × · · · × An−1 and x ∈ Ai,1 × · · · × Ai,n−1 for some i, then Ai,n must be empty.
Thus,

1A1×···×An−1
(x)µn(An) =

∞∑
i=1

1Ai,1×···×Ai,n−1
(x)µn(Ai,n).

Then, let µ′ = µ1 × · · · × µn−1 be the measure given by the induction hypothesis. Integrating both sides
with respect to µ′ on Ω1 × · · · × Ωn−1, we find that

µ′(A1 × · · · ×An−1)µn(An) =

∞∑
i=1

µ′(Ai,1 × · · · ×Ai,n−1)µn(Ai,n)

which is the desired result.
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2.5 Fubini’s Theorem

Lemma 2.17. Let (Ωi,Fi), i = 1, 2, 3 be measurable spaces. Let f : Ω1×Ω2 → Ω2 be a measurable function.
Then for all x ∈ Ω1, the map y 7→ f(x, y) is measurable on Ω2.

Proof. Take any A ∈ F3 and x ∈ Ω1. Let B = f−1(A) and Bx = {y ∈ Ω | f(x, y) ∈ A}. Our goal is to
demonstrate that Bx ∈ F2. Fixing x, let G = {E ∈ F1 × F2 | Ex ∈ F} where Ex = {y ∈ Ω2 | (x, y) ∈ E}.
Then G is a σ-algebra which contains every rectangular set. Thus, G contains F1 × F2, so Bx ∈ F2 for
every x ∈ Ω1, as desired.

Theorem 2.18 (Fubini’s Theorem). Let (Ω1,F1, µ1) and (Ω2,F2, µ2) be two σ-finite measure spaces. Let
µ = µ1 × µ2 and let f : Ω1 × Ω2 → R∗ be a measurable function. If f is either nonnegative or integrable,
then the map x 7→

∫
Ω2

f(x, y)dµ2(y) on Ω1 and the map y 7→
∫
Ω1

f(x, y)dµ1(x) on Ω2 are well-defined and

measurable (when set equal to zero if the integral is undefined). Moreover,∫
Ω1×Ω2

f(x, y)dµ(x, y) =

∫
Ω1

∫
Ω2

f(x, y)dµ2(y)dµ1(x) =

∫
Ω2

∫
Ω1

f(x, y)dµ1(x)dµ2(y).

Finally, if either of ∫
Ω1

∫
Ω2

|f(x, y)|dµ2(y)dµ1(x) =

∫
Ω2

∫
Ω1

|f(x, y)|dµ1(x)dµ2(y)

is finite, then f is integrable.

Proof. First, suppose that f = 1A for some A ∈ F1×F2. Then, for any x ∈ Ω1,
∫
Ω2

f(x, y)dµ2(y) = µ2(Ax),

where Ax = {y ∈ Ω2 | (x, y) ∈ A}. Now, our goal is to show that x 7→ µ2(Ax) is a measurable map.

Let L be the set of all E ∈ F1 × F2 such that x 7→ µ2(Ex) is a measurable map on Ω1 whose integral
is µ(E). We demonstrate that L is a λ-system, first under the assumption that µ1 and µ2 are both finite
measures. Now, clearly Ω1 × Ω2 ∈ L. Suppose E1, E2, · · · ∈ L are disjoint with union E, then Ex is the
disjoint union of (E1)x, (E2)x, . . . whence µ2(Ex) =

∑∞
i=1 µ((Ei)x). Thus, x 7→ µ2(Ex) is measurable. By

the monotone convergence theorem,∫
Ω1

µ2(Ex)dµ1(x) =

∞∑
i=1

∫
Ω1

µ2((Ei)x)dµ1(x) =

∞∑
i=1

µ(Ei) = µ(E).

Thus E ∈ L and L is closed under countable disjoint unions. Finally, take E ∈ L . Since µ1 and µ2 are
finite, µ2((E

c)x) = µ2((Ex)
c) = µ2(Ω2)− µ2(Ex) whence x 7→ µ2((E

c)x) is measurable. Then,∫
Ω1

µ2((E
c)x)dµ1(x) = µ1(Ω1)µ2(Ω2)−

∫
Ω1

µ2(Ex)dµ1(x) = µ(Ω)− µ(E) = µ(Ec).

whence L is a λ-system. Furthermore, it contains the π-system of all rectangles, which generates F1 ×F2,
so by the Dynkin π-λ theorem it contains F1 × F2, as desired.

Now, let µ1 and µ2 be σ-finite measures. Then let {En,1}n≥1 and {En,2}n≥1 be sequences of measure sets
of finite measure increasing to Ω1 and Ω2. For each n, let En = En,1 × En,2, and define the functionals
µn,i(A) = µi(A ∩ En,i) for each n and i = 1, 2. Also define µn(E) = µ(E ∩ En). These are finite measures
increasing up to µi and µ respectively. Then, if f : Ω1 → [0,∞] is a measurable function,∫

Ω1

f(x)dµn,1(x) =

∫
Ω1

f(x)1En,1
(x)dµ1(x),

where we use the convention ∞· 0 = 0 on the right (this follows first for indicator functions, then for simple
functions by linearity, and then for nonnegative measurable functions by the monotone convergence theorem).
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Then, for any E ∈ F1 × F2 and any x ∈ Ω1, µ2(Ex) is the increasing limit of µn,2(Ex)1En,1(x). This
demonstrates that x 7→ µ2(Ex) is measurable. Furthermore, µn = µn,1 × µn,2 because they agree on the
generating set of all rectangles, so the monotone convergence theorem yields that∫

Ω1

µ2(Ex)dµ1 = lim
n→∞

∫
Ω1

µn,2(Ex)1En,1
(x)dµ1(x) = lim

n→∞

∫
Ω1

µn,2(Ex)dµn,1(x) = lim
n→∞

µn(E) = µ(E).

This shows that Fubini’s theorem holds for all indicator functions. By linearity, it holds for all simple
functions, and by the monotone convergence theorem, it holds for all nonnegative measurable functions.
Then we can conclude the result for any integrable f using the case of Fubini’s Theorem for nonnegative
measurable functions separately for f+ and f−.

As an application of Fubini’s Theorem, we have the following:

Theorem 2.19. If f1, f2, . . . are measurable functions from Ω into R such that

∞∑
i=1

∫
|fi|dµ < ∞,

then show that the set of ω where
∑

fi(ω) does not exist is a measurable set of measure zero, and if we define∑
fi arbitrarily on this set (e.g., equal to zero), then

∫ ∑
fidµ =

∑∫
fidµ.

Proof. For this, we apply Fubini’s theorem. Indeed, let Ω1 = R, F1 be the Borel σ-algebra, and µ1 be the
Lebesgue measure. On the other hand, let Ω2 = Z+, F2 = P(Z+), and define µ2(S) = |S|. Now, define
f(x, n) = fn(x). First, let us demonstrate that f is measurable. Indeed, consider a measurable subset
M ⊆ R. Then f−1(M) is the countable union of the measurable sets

⋃∞
n=1 f

−1
n (M) × {n} and therefore

measurable, so f is indeed measurable. Finally, notice that integration with respect to the described measure
µ2 is simply summation. That is, if g : Z+ → R is a function, then

∫
Z+ gdµ2 =

∑∞
n=1 g(n). Then, it suffices

to use Fubini’s theorem.

Indeed, notice that
∫
Ω2

∫
Ω1

|f(x, y)|dµ1(x)dµ2(y) =
∑∞

i=1

∫
|fi|dµ < ∞, so f is integrable. Then, by Fu-

bini’s Theorem, the map x 7→ Ω2f(x, y)dµ2(y) =
∑∞

n=1 f(x, n) =
∑

fi(x) is defined almost everywhere.
Furthermore, if we set this map equal to zero where the integral is undefined, Fubini’s Theorem also yields∫ ∑

fidµ =

∫
Ω1

∫
Ω2

f(x, y)dµ2(y)dµ1(x) =

∫
Ω2

∫
Ω1

f(x, y)dµ1(x)dµ2(y) =
∑∫

fidµ

which is the desired result.

2.6 Infinite-Dimensional Product Spaces

Definition 2.20 (Infinite Product of Probability Spaces). Let {(Ωi,Fi, µi)}i≥1 be a countable collection
of probability spaces. Then the product σ-algebra F =

∏
i≥1 Fi on Ω = Ω1 × Ω2 × · · · by sets of the form

A1 ×A2 × · · · where at most finitely many Ai are not equal to Ωi.

Theorem 2.21. In the above case, there exists a unique probability measure µ on (Ω,F ) such that µ(A1 ×
A2 × · · · ) =

∏∞
i=1 µ(Ai) whenever all but finitely many Ai are equal to Ωi.

Proof. For each n, let νn = µ1 × · · · × µn. Let Ω
(n) = Ωn+1 × Ωn+2 × · · · . A set A ∈ F is called a cylinder

set if it is of the form B × Ω(n) for some n and B ∈ F1 × Fn. Then let A be the collection of all cylinder
sets. Then A is an algebra and σ(A ) = F . Then define µ on A as follows: if A ∈ A is B × Ω(n), let
µ(A) = νn(B). This can be easily verified to be well-defined.

Now, to show that µ is a measure, it suffices to show that µ is countably additive on A by Carathéodory’s The-
orem. Let A1, A2, · · · ∈ A be disjoint such that A =

⋃∞
i=1 Ai ∈ A . Then, for each n, let Bn = A\ (

⋃n
i=1 Ai).

Then, since A is an algebra, Bn ∈ A , and A is the disjoint union of A1, . . . , An, Bn. But µ is clearly finitely
additive, so µ(A) = µ(Bn)+µ(A1)+ · · ·+µ(An) for each n. Therefore, it suffices to show that limµ(Bn) = 0.

14



Since {Bn}n≥1 is a decreasing sequence of sets, there is some ε > 0 such that µ(Bn) ≥ ε for all n. We will
use this fact to yield a contradiction with the fact

⋂∞
n=1 Bn = ∅.

For each n, let A (n) be the algebra of all cylinder sets in Ω(n), and let µ(n) be the analogue of µ for
A(n). Then, for any n,m and (x1, . . . , xm) ∈ Ω1 × · · · × Ωm, define Bn(x1, . . . , xm) = {(xm+1, xm+2, . . . ) |
(x1, . . . , xm, xm+1, xm+2, . . . ) ∈ Bn}. By a previous lemma, Bn(x1) ∈ A (1) and by Fubini’s Theorem, the
map x1 7→ µ(1)(Bn(x1)) is measurable (µ(1) is evidently a measure on the σ-algebra of all sets of the form
D × Ω(m) ⊆ Ω(1)). Thus, the set Fn = {x1 ∈ Ω1 | µ(1)(Bn(x1)) ≥ ε

2} ∈ F1.

Then, by Fubini’s Theorem,

µ(Bn) =

∫
µ(1)(Bn(x1))dµ1(x1) =

∫
Fn

µ(1)(Bn(x1))dµ1(x1) +

∫
F c

n

µ(1)(Bn(x1))dµ1(x) ≤ µ1(Fn) +
ε

2
.

Therefore, µ1(Fn) ≥ ε/2. Since {Fn}n≥1 is a decreasing sequence of sets,
⋂

Fn ̸= ∅. Choose x∗
1 ∈

⋂
Fn.

Repeating the above argument for the product space Ω(1) and the sequence {Bn(x
∗
1)}n≥1, we find x∗

2 ∈ Ω2

such that µ(2)(Bn(x
∗
1, x

∗
2)) ≥ ε/4 for every n.

Then, we get a point x = (x∗
1, x

∗
2, . . . ) ∈ Ω such that for any m,n, µ(m)(Bn(x

∗
1, . . . , x

∗
m)) ≥ ε

2m . Then,

for any n, notice that since Bn is a cylinder set, it is of the form Cn × Ω(mn) for some mn and some
Cn ∈ F1 × · · · × Fmn . Since µ(mn)(Bn(x

∗
1, . . . , x

∗
mn

) > 0, there is some (xmn+1, xm+2, . . . ) ∈ Ω(mn) such
that (x∗

1, . . . , x
∗
mn

, xmn+1, . . . ) ∈ Bn. But then x ∈ Bn, so x ∈
⋂

n Bn, yielding the desired contradiction.

3 Random Variables

Definition 3.1 (Random Variable). A random variable X is a measurable map from a probability space
(Ω,F ,P) to R. The interpretation of this definition is that each element ω ∈ Ω is the outcome of some
randomized experiment, and that X(ω) is a value attached to this outcome.

Definition 3.2 (Law of a Random Variable). The law of a random variable X is a measure µX defined on
(R,B(R)) as µX(A) = P(X ∈ A) := P({ω | X(ω) = A})

Given any probability measure µ on R, there exists a random variable X with µX = µ. We construct this
random variable by letting Ω ∈ R, F = B(R), P = µ, and then letting X : Ω → R be X(ω) = ω.

Definition 3.3 (Cumulative Distribution Function). The cumulative distribution function (c.d.f.) for FX of
a random variable X is defined as FX(t) = P (X ≤ t) = µX((−∞, t]). Notice that since half-open intervals
generate the Borel sets as a σ-algebra, the c.d.f. uniquely determines the law.

Given any non-decreasing, right continuous function F : R → [0, 1] such that limt→∞ F (t) = 1 and
limt→−∞ F (t) = 0, then there exists a random-variable with c.d.f. F . To construct this, we simply de-
fine µ((a, b]) = F (b)− F (a) and then use Caratheodory’s theorem to construct µ everywhere.

Definition 3.4 (Probability Density Function). A measurable function f : R → [0,∞) is called a probability
density function (p.d.f.) if

∫∞
−∞ f(x)dx = 1. A p.d.f. defines a probability measure on R (precisely, on the

set of Lebesgue-measurable subsets of R) given by µ(A) =
∫
A
fdx.

Definition 3.5 (Random Variables and P.D.F.s). A random variable X is said to have a p.d.f. f if the
probability measure defined by f is the law of X.

Example 3.6. Not all random variables have a p.d.f. Indeed, any random variableX such that P(X = a) > 0
for any fixed a has no probably density function.

Notice that if f and g are two densities of X, they must be equal almost everywhere. Therefore, up to
almost-everywhere equality, it makes sense to define X ∼ f .
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3.1 Expected Value and Variance

Definition 3.7 (Expected Value of a Random Variable). Let (Ω,F ,P) be a probability space andX : Ω → R
be a random variable. We say that the expected value E[X] of X exists if

∫
XdP is defined; in this case, we

define E[X] =
∫
XdP.

Immediately, we notice from this definition that expectation is linear: i.e., for any integrable random variables
X and Y , E[aX + bY ] = aE[X] + bE[Y ].

Proposition 3.8. Given any random variable X and any measurable function g : R → R. Then

E[g(X)] =

∫
R
g(x)dµX(x)

in the sense that the left-hand side exists iff the right-hand side exists.

Proof. Take an arbitrary random variable X : Ω → R, and let g : R → R be a simple function; i.e., g =∑n
i=1 ai1Ai for A1, . . . , An ∈ B(R). Then,

∫
g◦XdP =

∑n
i=1 g(ai)P({ω | X(ω) ∈ Ai}) =

∑n
i=1 g(ai)µX(Ai) =∫

gdµX . Now, let g : R → [0,∞) be a measurable function and {gn} be a sequence of nonegative simple
functions increasing to g. Then 0 ≤ gn◦X and gn◦X increases to g◦X. Then by the Monotone Convergence
Theorem,

∫
gn ◦ XdP →

∫
g ◦ XdP. But

∫
gn ◦ XdP =

∫
gndµX and the latter increases to

∫
gdµX . It is

then straightforward to generalize to any measurable function g : R → R by splitting g into its positive and
negative parts.

Corollary 3.8.1. E[X] exists if and only if
∫
R xdµX(x) exists, and then the two are equal.

Proof. Apply the above proposition with the identity function id : R → R.

Proposition 3.9. Suppose X ∼ f . Then, for any measurable g such that g(X) is integrable

E[g(X)] =

∫
R
g(x)f(x)dx.

Proposition 3.10. If X is a nonnegative random variable, prove that

∞∑
n=1

P(X ≥ n) ≤ E(X) ≤
∞∑

n=0

P(X ≥ n)

with equality on the left if X is integer-valued.

Proof. Notice that P(X ≥ n) =
∑∞

k=n P(k ≤ X ≤ k + 1). Furthermore, since both sums have non-negative
terms, rearrangement is valid. Therefore,

∞∑
n=1

P(X ≥ n) =

∞∑
n=1

∞∑
k=n

P(k ≤ X < k + 1) =

∞∑
n=0

nP(n ≤ X < n+ 1)

∞∑
n=0

P(X ≥ n) =

∞∑
n=0

∞∑
k=n

P(k ≤ X < k + 1) =

∞∑
n=0

(n+ 1)P(n ≤ X < n+ 1)

Yet, notice that Ω =
⋃∞

n=0{ω | n ≤ X(ω) < n+ 1} and furthermore this is a disjoint union. Thus,

E(X) =

∫
Ω

XdP =

∞∑
n=0

∫
{ω|n≤X(ω)<n+1}

XdP.

But, of course, nP(n ≤ X < n + 1) ≤
∫
{ω|n≤X(ω)<n+1} XdP ≤ (n + 1)P(n ≤ X < n + 1) with equality on

the left when X is integer-valued (for then X = n on {ω | n ≤ X(ω) < n+ 1}). This yields that, as desired,
∞∑

n=1

P(X ≥ n) =

∞∑
n=0

nP(n ≤ X < n+ 1) ≤ E(X) ≤
∞∑

n=0

(n+ 1)P(n ≤ X < n+ 1) =

∞∑
n=0

P(X ≥ n)

with equality on the left when X is integer-valued, as desired.
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Theorem 3.11. If X is a nonnegative random variable,

E(X) =

∫ ∞

0

P(X ≥ t)dt =

∫ ∞

0

P(X > t)dt

interpreting both integrals on the right as Lebesgue integrals with respect to Lebesgue measure.

Proof. Let f(t, ω) = 1 ifX(ω) ≥ t and 0 otherwise. Then,
∫∞
0

P(X ≥ t) =
∫∞
0

∫
X≥t

dPdt =
∫
[0,∞)

∫
Ω
fdPdt =∫

Ω

∫
[0,∞)

fdtdP =
∫
Ω
XdP = E(X), where we may apply Fubini’s Theorem on the basis that f is non-negative.

Similarly, define g(t, ω) = 1 if X(ω) > t and 0 otherwise. Then, again,
∫∞
0

P(X > t) =
∫∞
0

∫
X>t

dPdt =∫
[0,∞)

∫
Ω
gdPdt =

∫
Ω

∫
[0,∞)

gdtdP =
∫
Ω
XdP = E(X).

Definition 3.12 (Variance). The variance of a random variable X is defined to be

Var(X) = E[X2]− E[X]2 = E[(X − E[X])2].

These two quantities can be seen to be equal by computing

E[X2]− E[X]2 = E[X2]− 2E[X]2 + E[X]2 = E[X2 − 2XE[X] + E[X]2] = E[(X − E[X])2].

Proposition 3.13. For any random variable X, Var(aX + b) = a2 Var(X).

Definition 3.14 (Covariance). The covariance of random variables is defined to be

Cov(X,Y ) = E[XY ]− E[X]E[Y ].

3.2 Standard Distributions

Following are a series of possible distributions for random variables:

Definition 3.15 (Normal Distribution). A random variable X has the normal or Gaussian distribution
with mean parameter µ ∈ R and standard deviation parameter σ > 0 (denoted by X ∼ N (µ, σ)) if it has
p.d.f.

f(x) =
1√
2πσ

e−
(x−µ)2

2σ2 .

Definition 3.16 (Exponential Distribution). A random variable X has the exponential distribution with
rate parameter λ if it has p.d.f.

f(x) = λe−λx

when x ≥ 0 and 0 otherwise.

Definition 3.17 (Bernoulli Distribution). A random variable X has the Bernoulli distribution with param-
eter p if P(X = 0) = 1− p and P(X = 1) = p.

Definition 3.18 (Binomial Distribution). A random variable X has the binomial distribution with param-
eters n and p if P(X = k) =

(
n
k

)
pk(1− p)n−k for all 0 ≤ k ̸= n and 0 otherwise.

Definition 3.19 (Geometric Distribution). A random variable X has the geometric distribution with pa-
rameter p if P(X = k) = (1− p)k−1p.

Definition 3.20 (Poisson Distribution). A random variable X has the Poisson distribution with parameter

λ if P(X = k) = e−λ λk

k! .
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3.3 Characteristic Functions

Definition 3.21 (Characteristic Function). The characteristic function of a random variable X is defined
by ϕX(t) = E[eiXt] = E[cos tX] + iE[sin tX].

The characteristic function of any random variable exists because E|eiXt| = E[1] = 1; thus, eiXt is integrable.

Proposition 3.22 (Boundedness of ϕX). |ϕX(t)| ≤ 1.

Proof. This follows immediately from the identity
∣∣∫ fdµ

∣∣ ≤
∫
|f |dµ. This can be deduced by letting

reiθ =
∫
fdµ, and then working out∣∣∣∣∫ fdµ

∣∣∣∣ = r = re−iθeiθ =

∫
e−iθfdµ = Re

(∫
e−iθfdµ

)
=

∫
Re
(
e−iθf

)
dµ =

∫
|e−iθf |dµ =

∫
|f |dµ.

Proposition 3.23 (Uniform Continuity of ϕX). For any random variable X, the characteristic function ϕX

is continuous.

Proof. Fix s, t. Then |ϕX(t) − ϕX(s)| = |E[eitX(1 − ei(s−t)X)]| ≤ E|eitX(1 − ei(s−t)X)| ≤ E|1 − ei(s−t)X |.
Yet 1 − ei(s−t)X converges to 0 for each ω ∈ Ω and is dominated by the constant 2, so by the dominated
convergence theorem E|1 − ei(s−t)X | → 0 as s − t → 0. In other words, for any ε > 0, there exists δ such
that if |s− t| < δ, then |ϕX(t)− ϕX(s)| ≤ E|1− ei(s−t)X | < ε, as desired.

Proposition 3.24 (Symmetry and Real ϕX). A random variable X is symmetric around 0 (i.e. P(X ≥
k) = P(X ≤ −k) for any k ≥ 0) if and only if ϕX is real.

Proof. This follows from the identity ϕ−X = ϕX .

Proposition 3.25 (Convolution of ϕX). For any random variables X and Y , ϕX∗Y (t) = ϕX(t)ϕY (t).

Proposition 3.26. Suppose that X ∼ N (0, 1). Then, ϕX(t) = e−t2/2.

Proof. Now, ϕX(t) = 1√
2π

∫∞
−∞ eitxe−x2/2dx = e−t2/2

√
2π

∫∞
−∞ e−(x−it)2/2dx.

Now, fix R > 0. Let C be the contour integral from −R to R to R− it to −R− it. Since the map z 7→ e−z2/2

is entire, the integral of e−z2/2 along C is 0. Now, it can be easily shown that the vertical sections R to
R− it and −R to −R− it go to 0 as R → ∞. Therefore, as R → ∞, if C1 denotes the contour −R to R and
C2 denotes the contour −R− it to R− it, then as R → ∞∫

C1

e−z2/2dz −
∫
C2

e−z2/2dz → 0.

But as R → ∞,
∫
C1

e−z2/2dz →
√
2π and

∫
C2

e−z2/2dz →
∫∞
−∞ e−(x−it)2/2dx. The result follows.

3.4 Independence

For the remainder of this section, assume that (Ω,F ,P) is a probability space.

Definition 3.27 (Independent Events). Two events A,B ∈ F are independent if P(A ∩ B) = P(A)P(B).
More generally, {Ai}i∈I are independent if P(Ai ∩Aj) = P(Ai)P(Aj) whenever i ̸= j.

Definition 3.28 (Independent σ-Algebras). Let {Gi}i∈I be a collection of sub-σ-algebras of F . Then
these σ-algebras are independent if for any distinct i1, . . . , ik ∈ I and any A1 ∈ Gi1 , . . . , Ak ∈ Gik , we have

P(
⋂k

j=1 Aj) =
∏k

j=1 P(Aj).

Proposition 3.29. A collection {Ai}i∈I of events is independent if and only if the collection {σ({Ai})}i∈I =
{{∅, Ai, A

c
i ,Ω}} of σ-algebras is independent.
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Definition 3.30 (σ-Algebra Generated by Random Variables). Let {Xi}i∈I be a collection of random
variables defined on Ω. Then, the σ-algebra generated by {Xi}i∈I , denoted σ({Xi}i∈I) is the σ-algebra of
all sets of the form X−1

i (A) for i ∈ I, A ∈ B(R). This is the smallest σ-algebra such that all of the Xi are
measurable.

Definition 3.31 (Independent Collections). A set of collections of random variables {{Xi}i∈Iα}α∈A is
independent if the σ-algebras {σ({Xi}i∈Iα)}α∈A are independent. In particular, {Xi}i∈I are independent if
{σ(Xi)}i∈I are independent. This is equivalent to the statement that for all i1, . . . , ik ∈ I and all A1, . . . , Ak ∈
B(R), P(Xi1 ∈ A1, . . . , Xik ∈ Ak) = P(Xi1 ∈ A1) · · ·P(Xik ∈ Ak).

Proposition 3.32. Let µ1, µ2, . . . be a sequence of probability measures on R. Then there exists a probability
space (Ω,F ,P) and independent random variables X1, X2, . . . on Ω such that µi is the law of Xi for each i.

Proof. This is done by taking P = µ1 × µ2 × · · · , Ω = RN, and Xi defined in the obvious way.

Example 3.33. There exist three three random variables X1, X2, X3 that are pairwise independent but not
independent.

Proof. Consider the uniform distribution on Ω = {a, b, c, d} (i.e. F = 2Ω and µ(S) = |S|
4 ). Then let

X1(ω) = 1{a,b}, X2(ω) = 1{a,c}, and X3(ω) = 1{b,c}. To show that Xi and Xj are independent for i ̸= j, it
suffices to show that

P(Xi = 1, Xj = 1) = P(Xi = 1)P(Xj = 1) P(Xi = 0, Xj = 1) = P(Xi = 0)P(Xj = 1)

P(Xi = 1, Xj = 0) = P(Xi = 1)P(Xj = 0) P(Xi = 0, Xj = 0) = P(Xi = 0)P(Xj = 0)

Yet notice that P(Xi = n,Xj = m) = 1
4 and P(Xi = n) = 1

2 and P(Xj = m) = 1
2 for any n,m ∈ {0, 1}.

Thus, all the above equalities hold and indeed Xi and Xj are independent whenever i ̸= j. Yet X1, X2, and
X3 are not independent as P(X1 = 1, X2 = 1, X3 = 1) = 0 yet P(X1 = 1)P(X2 = 1)P(X3 = 1) = 1

8 .

Theorem 3.34 (Multiplicativity of Expectation). Suppose X1, X2, . . . , Xn are independent and integrable
random variables defined on (Ω,F ,P). Then, X1 · · ·Xn is also integrable and E[X1 . . . Xn] = E[X1] · · ·E[Xn].

Proof. By induction, it suffices to demonstrate the result for n = 2. First, suppose X and Y are nonnegative
independent simple random variables, i.e., X =

∑
i ai1Ai and Y =

∑
j bj1Bj . Then,

E[XY ] = E[
∑
i

∑
j

aibj1Ai
1Bj

] =
∑
i

∑
j

aibjE[1Ai∩Bj
] =

∑
i

∑
j

aibjP(Ai ∩Bj) =
∑

i
∑
j

aibjP(Ai)P(Bj).

But the last expression is precisely E[X]E[Y ].

Now, suppose that X and Y are arbitrary nonnegative independent random variables. Then, there exist
nonnegative simple random variables Xn increasing to X and Yn increasing to Y . Yet then, looking at the
construction, Xn is σ(X)-measurable and Yn is σ(Y )-measurable, so that Xn and Y − n are independent
and E[XnYn] = E[Xn]E[Yn]. But then XnYn increases to XY , so by the monotone convergence theorem we
have E[XY ] = limn→∞ E[XnYn] = limn→∞ E[Xn]E[Yn] = E[X]E[Y ].

Finally, let X and Y be arbitrary. Then X+ and X− are σ(X)-measurable and Y + and Y − are σ(Y )-
measurable, so that X+ and X− are independent with Y + and Y −. Thus,

E|XY | = E[(X+ −X−)(Y + − Y −)] = E[X+Y +]− E[X+Y −]− E[X−Y +] + E[X−Y −]

= E[X+]E[Y +]− E[X+]E[Y −]− E[X−]E[Y +] + E[X−]E[Y −].

This shows that XY is integrable, as E|X| and E|Y | are both finite. Then, repeating the processes with
E[XY ] instead of E|XY |, we also obtain E[XY ] = E[X]E[Y ] as desired.

Definition 3.35 (Uncorrelated). Two random variables X and Y are said to be uncorrelated if Cov(X,Y ) =
0.
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Proposition 3.36. If X and Y are independent and integrable, then they are uncorrelated.

Proof. First, suppose that X and Y are simple; that is, X =
∑k

i=1 ai1Ai and Y =
∑m

j=1 bj1Bj for distinct

non-negative ai and bj and measurable Ai and Bj . Then, Ai = X−1({ai}) ∈ σ(X) and Bj = Y −1({bj}) ∈
σ(Y ) whence Ai and Bj are independent for each i, j. Yet then

E[XY ] =

k∑
i=1

m∑
j=1

aibjE(1Ai1Bj ) =

k∑
i=1

m∑
j=1

aibjP(Ai ∩Bj) =

k∑
i=1

m∑
j=1

aibjP(Ai)P(Bj) = E[X]E[Y ].

Then, suppose that X and Y are non-negative and independent. Then, there exist simple random vari-
ables Xn increasing to X and Yn increasing to Y by Proposition 2.8. Then, Xn is σ(X)-measurable and
Yn is σ(Y )-measurable by the construction in Proposition 2.8. Thus Xn and Yn are independent, so that
E[XnYn] = E[Xn]E[Yn] by our work above. Then, Xn ↑ X and Yn ↑ Y implies XnYn ↑ XY , so that by the
monotone convergence theorem E[XY ] = limn→∞ E[XnYn] = limn→∞ E[Xn]E[Yn] = E[X]E[Y ].

Then, suppose X and Y are independent. Then X+ and X− are σ(X)-measurable, and similarly Y + and
Y − are σ(Y )-measurable. Thus,

E|XY | = E[(X+ −X−)(Y + − Y −)] = E[X+Y +]− E[X+Y −]− E[X−Y +] + E[X−Y −]

= E[X+]E[Y +]− E[X+]E[Y −]− E[X−]E[Y +] + E[X−]E[Y −].

This shows that XY is integrable, as E[X+], E[X−], E[Y +], and E[Y −] are all finite. Then, repeating the
processes with E[XY ] instead of E|XY |, we also obtain E[XY ] = E[X]E[Y ] as desired.

4 Inequalities, Lp Spaces, and Lemmas

This section dives into the details of random variables and provides tools for analyzing them.

4.1 Concentration Inequalities

In this section, we develop some useful tools for determining when a random variable is close to a fixed value.

Proposition 4.1 (Markov’s Inequality). Let (Ω,F , µ) be a measure space. Let f : Ω → [0,∞] be a measur-

able function. Then, for any t > 0, µ{ω | f(ω) ≥ t}) ≤
∫
fdµ
t .

Proof. Let A = {ω | f(ω) ≤ t}. Then let g = 1A and h = f
t . Then g ≤ h, so

∫
gdµ ≤

∫
hdµ. But∫

gdµ = µ{ω | f(ω) ≥ t} and
∫
hdµ =

∫
fdµ
t , so we are done.

Proposition 4.2 (Chebyshev’s Inequality). Let X be any random varible with E[X2] < ∞. Then, for any
t > 0,

P(|X − E[X])| ≥ t) ≤ Var(X)

t2
.

Proof. By Markov’s inequality, P(|X − E[X]| ≥ t) = P((X − E[X])2 ≥ t2) ≤ E[X−E[X]]2

t2 = Var(X)
t2 .

Proposition 4.3 (Cantelli’s Inequality). Let X be a random variable with E[X2] < ∞. Then, for t > 0,

P(X − E[X] ≥ λ) ≤ σ2

σ2 + λ2
.

Proof. Fix u ≥ 0. Define Y = X − E[X]. Then,

P(X − E[X] ≥ λ) = P(Y ≥ λ) = P(Y + u ≥ λ+ u) ≤ P((Y + u)2 ≥ (λ+ u)2) ≤ E[(Y + u)2]

(λ+ u)2
=

σ2 + u2

(λ+ u)2

where the last inequality is an application of Markov’s inequality. Then, notice that σ2+u2

(λ+u)2 can be minimized

by letting u = σ2

λ , from which the desired inequality follows.
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Corollary 4.3.1. Let X be a real-valued random variable with E[X2] < ∞. Then, for t > 0,

P(X − E[X] ≤ −λ) ≤ σ2

σ2 + λ2
.

Proof. Apply the Cantelli inequality to −X.

This is superior to Chebyshev’s inequality for one-sided bounds, and inferior for two-sided bounds.

Following is an exploration of the Chernoff bound for independent random variables, which is useful for
applying the probabilistic method. For these, we use the moment generating function.

Definition 4.4 (Moment Generating Function). Let X be a random variable. Then the moment generating
function MX(s) is defined to be E[esX ].

Lemma 4.5. Suppose that X =
∑n

i=1 Xi where the Xi are independent random variables. Then,

MX(s) =

n∏
i=1

MXi
(s).

Proposition 4.6 (Multiplicative Chernoff Bound). Let X =
∑n

i=1 Xi, where Xi = 1 with probability pi,
and Xi = 0 with probability 1− pi, and all the Xi are independent. Let µ = E[X]. Then,

(i) P(X ≥ (1 + δ)µ) ≤ e−
δ2

2+δµ for all δ > 0.

(ii) P(X ≤ (1− δ)µ) ≤ e−µδ2/2 for all 0 < δ < 1.

(iii) P(|X − µ| ≥ δµ) ≤ 2e−µδ2/3 for all 0 < δ < 1.

Proof.
(i): First, notice that

MX(s) =

n∏
i=1

MXi(s) =

n∏
i=1

(pi · es + (1− pi)) =

n∏
i=1

1 + pi(e
s − 1) ≤

n∏
i=1

epi(e
s−1) = e(e

s−1)µ

Then, it follows that for any s > 0,

P(X ≥ (1 + δ)µ) = P(esX ≥ es(1+δ)µ) ≤ MX(s)

es(1+δ)µ
≤ e(e

s−1)µe−s(1+δ)µ.

Defining s = log(1 + δ), we obtain that

P(X ≥ (1 + δ)µ) ≤ e(e
log(1+δ)−1)µe− log(1+δ)(1+δ)µ =

(
eδ

(1 + δ)1+δ

)µ

.

Now, log(1 + x) ≥ x
1+ x

2
for all x > 0. Thus,

(
eδ

(1 + δ)1+δ

)µ

= e
log

((
eδ

(1+δ)1+δ

)µ)
= eµ(δ−(1+δ) log(1+δ)) ≤ e

µδ

(
1− 1+δ

1+ δ
2

)
= e

−µδ
δ
2

1+ δ
2 = e−µ δ2

2+δ .

(ii): Now, it follows that for any s < 0

P(X ≤ (1− δ)µ) = P(esX ≥ es(1−δ)µ) ≤ MX(s)

es(1−δ)µ
= e(e

s−1)µe−s(1−δ)µ.

Defining s = log(1− δ), we obtain that

P(X ≤ (1− δ)µ) ≤ e(e
log(1−δ)−1)µe− log(1−δ)(1−δ)µ =

(
e−δ

(1− δ)1−δ

)µ

.
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Now, (1− x) log(1− x) ≥ −x+ x2

2 . Thus,(
e−δ

(1− δ)1−δ

)µ

= e
log

((
e−δ

(1−δ)1−δ

)µ)
= eµ(−δ−(1−δ) log(1−δ)) ≤ eµ(−δ+δ−δ2/2) = e−µδ2/2.

(iii): This follows immediately from the prior two bounds.

A similar additive result can be shown using the same methods:

Proposition 4.7 (Additive Chernoff Bound). Let X =
∑n

i=1 Xi, where Xi = 1 with probability pi and
Xi = 0 with probability 1− pi, and all the Xi are independent. Let µ = E[X]. Then,

(i) P(X ≥ µ+ δn) ≤ e−2nδ2 .

(ii) P(X ≤ µ− δn) ≤ e−2nδ2 .

(iii) P(|X − µ| ≥ δn) ≤ 2e−2nδ2 .

4.2 The Borel-Cantelli Lemmas

Lemma 4.8 (First Borel-Cantelli Lemma). Let (Ω,F , µ) be a measure space. Let A1, A2, · · · ∈ F . Suppose
that

∑∞
i=1 µ(Ai) < ∞. Then µ({ω | ω ∈ Ai i.o.}) = 0.

Proof. Notice that {ω | ω ∈ Ai i.o.} ⊆
⋂∞

i=1

⋃∞
j=i Aj . Thus let Bi =

⋃∞
j=i Ai. Then µ({ω | ω ∈ Ai i.o.}) =

limi→∞ µ(Bi) because µ(B1) < ∞. But then µ({ω | ω ∈ Ai i.o.}) = limi→∞ µ(Bi) ≤ limi→∞
∑∞

n=i An = 0,
because the tails of convergent series go to zero.

Lemma 4.9 (Second Borel-Cantelli Lemma). Let {An}∞n=1 be a sequence of independent events. Then, if∑∞
n=1 P(An) diverges to +∞, then P(An happens i.o.) = 1.

Proof. Let B be the event of An happening infinitely often. Then B =
⋂∞

n=1

⋃∞
k=n Ak. Thus, Bc =⋃∞

n=1

⋂∞
k=n A

c
k. Then, since

⋂∞
k=n A

c
k is increasing in n, P(Bc) = limn→∞ P (

⋂∞
k=n A

c
k). Yet then for any n

and any m > n,

P

( ∞⋂
k=n

Ac
k

)
≤ P

(
m⋂

k=n

Ac
k

)
=

m∏
k=n

P(Ac
k) =

m∏
k=n

(1− P(Ak))

and since 1− x ≤ e−x for all x ≥ 0,

m∏
k=n

(1− P(Ak)) ≤
m∏

k=n

e−P(Ak) = e−
∑m

k=n P(Ak)

which goes to 0 as m → ∞ by the assumption that
∑∞

n=1 P(An) diverges to +∞. Thus, P (
⋂∞

k=n A
c
k) = 0

for any n, whence P(Bc) = limn→∞ 0 = 0, yielding the desired result.

Example 4.10. Suppose you have a random infinite string of the 26 letters of the English alphabet, where
each letter is drawn independently and uniformly at random. Then, the probability that every word appears
infinitely often is 1. To prove this, letW be the set of words; since each word has finite length, W is countable.
Now, notice that it suffices to show that any single word appears infinitely often with probability 1, because
then by using countable additivity on the complement, we obtain that every word appears infinitely often
with probability 1. Yet this is immediate from the Borel-Cantelli Lemma, by letting Ai be the event that
the (i− 1)|w|th to i|w| − 1th characters form w (so that P(Ai) = 26−|w| and the sum diverges).
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4.3 Lp Spaces

Definition 4.11 (Lp Spaces). Let (Ω,F , µ) be a measure space. For p ∈ [1,∞), let Lp(Ω,F , µ) denote the

set of all measurable functions f : Ω → R such that
∫
|f |pdµ < ∞. Let ∥f∥Lp denote

(∫
|f |pdµ

)1/p
.

Proposition 4.12 (Jensen’s Inequality). Let (Ω,F , µ) be a probability space. Let f : Ω → I be a measurable
function where I ⊆ R is an interval. Let ϕ : I → R be a convex function (i.e. ϕ(tx + (1 − t)y) ≤
tϕ(x) + (1 − t)ϕ(y) for all x, y). Informally, the line between any two points of the graph of ϕ is above the
graph itself. Then, if ϕ ◦ f is measurable,∫

ϕ ◦ fdµ ≥ ϕ

(∫
fdµ

)
Proof. Let x =

∫
fdµ; then x ∈ I. Then, by choosing a to be any number in the interval[

lim
y↑x

ϕ(x)− ϕ(y)

x− y
, lim
y↓x

ϕ(y)− ϕ(x)

y − x

]
.

and defining b = ϕ(x) − ax, a and b satisfy ax + b = ϕ(x) and ay + b ≤ ϕ(y) for all y ∈ I. Then
ϕ
(∫

fdµ
)
= ϕ(x) = ax+ b = a

∫
fdµ+ b =

∫
(af + b) dµ ≤

∫
ϕ ◦ fdµ.

Proposition 4.13 (Young’s Inequality). Suppose p, q ∈ [1,∞) are such that 1
p + 1

q = 1. Then ∀x, y > 0,

xy ≤ xp

p + yq

q .

Proof. Let Ω = {0, 1} and f : Ω → R be f(0) = xp and f(1) = yq. Let ϕ(z) = − log z. Then ϕ is convex, so

Jensen’s gives ϕ(
∫
fdµ) = − log

(
xp

p + yq

q

)
≤
∫
ϕ ◦ fdµ = 1

p (− log xp) + 1
q (− log yq) = − log(xy).

Proposition 4.14 (Hölder’s Inequality). Suppose that p, q ∈ [1,∞) are such that 1
p + 1

q = 1. Take any

f ∈ Lp(µ), g ∈ Lq(µ). Then fg ∈ L1(µ) and ∥fg∥L1 ≤ ∥f∥Lp ∥g∥Lq .

Proof. Suppose that ∥f∥Lp = ∥g∥Lq = 1. Then, by Young’s inequality, |fg| ≤ |f |p
p + |g|q

q . Then
∫
|fg|dµ ≤∫

|f |pdµ
p +

∫
|g|qdµ
q = 1

p + 1
q = 1. Therefore, the result holds when f and g have norm 1, and we can obtain

the general result by replacing f and g with f
∥f∥Lp

and g
∥g∥Lq

.

Lemma 4.15. f + g ∈ Lp implies that f + g ∈ Lp.

Proof. Suppose that p ≥ 1. Then x 7→ xp is convex on [0,∞), s,
∣∣a+b

2

∣∣p ≤
∣∣∣ |a|+|b|

2

∣∣∣p ≤ |a|p
2 + |b|p

2 by Jensen’s.

Then
∫ ∣∣∣ f+g

2

∣∣∣p dµ ≤
∫ |f |p+|g|p

2 dµ < ∞ whence
∫
|f + g|p dµ is finite.

Corollary 4.15.1. Any Lp space is a vector space.

Theorem 4.16 (Minkowski’s Inequality). For all f, g ∈ Lp(µ) and all p ∈ [1,∞), ∥f + g∥Lp ≤ ∥f∥Lp +
∥g∥Lp .

Proof. Notice that p = 1 is the trivial case of the triangle inequality. Thus, assume that p ∈ (1,∞).
Furthermore, for now we will assume that f + g ∈ Lp(µ). Then∫

|f + g|pdµ =

∫
|f + g||f + g|p−1dµ ≤

∫
|f | · |f + g|p−1dµ+

∫
|g||f + g|p−1dµ

Then, let q be such that 1
p + 1

q = 1. Then (p− 1)q = p. On the other hand, by Hölder’s Inequality,∫
|f |·|f+g|p−1dµ+

∫
|g||f+g|p−1dµ ≤

(∫
|f |p

)1/p(∫
|f + g|p−1qdµ

)1/q

+

(∫
|g|p
)1/p(∫

|f + g|p−1qdµ

)1/q

But this just equals (∥f∥Lp+∥g∥Lp)
(∫

|f + g|pdµ
)1/q

, so indeed
∫
|f+g|pdµ ≤ (∥f∥Lp+∥g∥Lp)

(∫
|f + g|pdµ

)1/q
which can be rearranged to give the desired result.
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Theorem 4.17 (Riesz-Fischer Theorem). For any measure space (Ω,F , µ) and any p ∈ [1,∞), Lp(Ω,F , µ)
is a complete normed space (i.e. any Cauchy sequence convergences).

Proof. Let {fn}n≥1 be a Cauchy sequence in Lp(µ). Then, we can find a subsequence {fnk
}k≥1 such

that ∥fnk
− fn∥Lp < 1

2k
for any n > nk. Then, the sequence {fnk

}∞k=1 converges pointwise almost ev-

erywhere. To see why, define Ak = {ω | |fnk
(ω) − fnk+1

(ω)| ≥ 2−k/2}, and notice that by Markov’s

inequality, µ(Ak) ≤ 2−kp/2. Thus,
∑∞

k=1 µ(Ak) ≤
∑∞

k=1 2
−kp/2 < ∞. Then, by the Borel-Cantelli Lemma,

µ({ω | ω ∈ Ak infinitely often}) = 0. But if ω is not in Ak infinitely often, then ω is in only finitely many
Ak. Then |fnk

(ω) − fnk+1
(ω)| < 2−k/2 for all but finitely many k. Thus

∑∞
k=1 |fnk+1

(ω) − fnk
(ω)| < ∞

which implies that limk→∞ fnk
(ω) exists. Define f(ω) = limk→∞ fnk

(ω) if the limit exists and 0 otherwise.
By our work above, the latter case happens with measure 0.

Furthermore, by applying Fatou’s Lemma to fnk
, we find that f is in Lp. Indeed, fnk

→ f in Lp. To
complete the proof, recall that if a Cauchy sequence in a metric space has a convergent subsequence, then
the full Cauchy sequence converges to the same limit.

Theorem 4.18 (Monotonicity in p). Let (Ω,F , µ) be a probability space. Then, for all 1 ≤ p ≤ q, Lq(µ) ⊆
Lp(µ). Moreover ∥f∥Lp ≤ ∥f∥Lq for all f in Lq.

Proof. Now, since x 7→ xq/p is convex,
∫
|f |qdµ =

∫
(|f |p)q/pdµ ≥

(∫
|f |pdµ

)q/p
, where the final step is by

Jensen’s inequality. Thus, ∥f∥Lq ≥ ∥f∥Lp

On the other hand, monotonicity does not necessarily hold when Ω has infinite measure:

Proposition 4.19. Let λ be the Lebesgue measure on R. Then neither of L1(λ) and L2(λ) is a subset of
the other.

Proof. Let f be the function x 7→ 1[1,∞)(x)

x . Then,∫
R
|f |dλ =

∫ ∞

1

1

x
dx = ∞.

Thus, f ̸∈ L1. On the other hand, ∫
R
|f |2dλ =

∫ ∞

1

1

x2
dx = − 1

x

∣∣∞
1

= 1.

Therefore, f ∈ L2(λ) but f ̸∈ L1(λ), so indeed L2(λ) ̸⊆ L1(λ).

On the other hand, let g be the function x 7→ 1(0,1]√
x
. Then,∫

R
|g|2dλ = lim

t→0+

∫ 1

t

1

x
dx = lim

t→0
(ln(1)− ln(t)) = lim

t→0
ln

(
1

t

)
= lim

u→∞
ln(u) = ∞.

Therefore, g ̸∈ L2. On the other hand,∫
R
|g|dλ = lim

t→0+

∫ 1

t

1√
x
dx = lim

t→0+
(2
√
1− 2

√
t) = 2.

Therefore, f ∈ L1(λ) but f ̸∈ L2(λ), so indeed L1(λ) ̸⊆ L2(λ).

4.4 The Kolmogorov Zero-One Law

Definition 4.20 (Tail σ-Algebra). Let X1, X2, . . . be a sequence of random variables on a given probability
space. Then the tail σ-algebra generated by this family is

T (X1, X2, . . . ) :=

∞⋂
n=1

σ(Xn, Xn+1, . . . ).
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Theorem 4.21 (Kolmogorov Zero-One Law). If {Xn}∞n=1 is a sequence of independent random variables
defined on a probability space (Ω,F ,P) and T is the tail σ-algebra of this sequence, then for any A ∈ T ,
P(A) is either 0 or 1.

Proof. Take any n. Then, since A ∈ σ(Xn+1, Xn+2, . . . ) and the Xi’s are independent, it follows that
A is independent of the σ-algebra σ(X1, . . . , Xn). Then, let A =

⋃∞
n=1 σ(X1, . . . , Xn). Then, σ(A) =

σ(X1, X2, . . . ). Then, A is independent of B for every B ∈ A, so A is independent of σ(X1, X2, . . . ). But
then A is independent of itself, so P(A) = P(A ∩A) = P(A)2 whence P(A) is either 0 or 1.

Example 4.22. Consider independent random variables X1, X2, . . . . Let Sn =
∑n

i=1 Xi and {an} be a
sequence of positive real numbers increasing to ∞. Then, let L = lim supn→∞

Sn

an
. Then, for any t ∈ R,

the event {L ≤ t} is a tail event. Thus, for all t, P(L ≤ t) is either 0 or 1. Therefore, there exists some
c ∈ [−∞,∞] such that P(L = c) = 1. In summary, it follows that for any an ↑ ∞, there exists some c such
that P(lim sup Sn

an
= c) = 1.

5 Convergence Results

This section covers the laws of large numbers and the central limit theorem, which are the two main results
which are used to show the convergence of sums of random variables.

5.1 Types of Convergence

First, we begin with a recap of various types of convergence. Then, we discuss equivalent formulations of
these notions as well as various relationships between them:

Definition 5.1 (Convergence Almost Everywhere). A sequence of random variables {Xn}∞n=1 on a prob-
ability space Ω converges almost everywhere to a random variable X on Ω if for almost all ω ∈ Ω,
limn→∞ Xn(ω) → limn→∞ X(ω). This is denoted “Xn → X almost everywhere” or “Xn → X a.s.”.

Definition 5.2 (Convergence in Probability). A sequence of random variables {Xn}∞n=1 on a probability
space Ω converges in probability to a random variable X on Ω if for all ε > 0, limn→∞ P(|Xn −X| > ε) = 0.

This is denoted “Xn → X in probability” or “Xn
p→ X”.

Definition 5.3 (Convergence in Distribution). A sequence of random variables {Xn}∞n=1 with respective
c.d.f. Fn converges in distribution to a random variable X with c.d.f. F if for any t ∈ R which is a continuity

point of F , limn→∞ Fn(t) = F (t). This is denoted “Xn → X in distribution” or “Xn
d→ X”.

Definition 5.4 (Convergence in Lp). A sequence of random variables {Xn}∞n=1 converges in Lp to a random

variable X if ∥Xn −X∥Lp → 0 as n → 0. This is denoted “Xn → X in Lp” or “Xn
Lp

→ X”. The special case
of p = 1, convergence in L1, is particularly important.

Definition 5.5 (Convergence in Expectation). A sequence of random variables {Xn}∞n=1 converges in ex-
pectation to a random variable X if E[Xn] → E[X].

Following is a diagram of the relations between the various types of convergence.
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The remainder of this subsection is dedicated to proving this result.

5.1.1 Unconditional Relationships

Proposition 5.6. Xn → X everywhere implies Xn → X a.e.

Proof. Trivial.

Proposition 5.7. Xn → X a.e. implies that Xn → X in probability.

Proof. Fix ε > 0. Let A = {ω | ∃Nω ∀n > Nω |Xn(ω) − X(ω)| < ε}. By definition of a.e. convergence,
P(A) = 1. Now, for all N , let AN = {ω | ∀n > N |Xn(ω)−X(ω)| < ε}. Since AN ↑ A, P(AN ) ↑ P(A) = 1.
Thus, there exists N ′ such that P(AN ′) > 1− ε; then, for all n > N ′, P(|Xn −X| ≥ ε) < 1− ε.
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Proposition 5.8. For 1 ≤ p ≤ ∞, Xn → X in Lp implies Xn → X in probability.

Proof. Fix ε > 0. If p < ∞, then by Markov’s inequality,

lim
n→∞

µ(|fn − f | ≥ ε) = lim
n→∞

µ(|fn − f |p ≥ εp) ≤ lim
n→∞

1

εp

∫
|fn − f |pdµ = lim

n→∞

1

εp
∥fn − f∥pLp = 0.

On the other hand, if p = ∞, there exists N such that ∥fn − f∥∞ < ε for all n > N . But then ∥fn − f∥∞ < ε
implies µ(|fn − f | ≥ ε) = 0, so the result also follows in this case.

Corollary 5.8.1. Xn → X in L1 implies Xn → X in probability.

Proposition 5.9. Xn → X in probability implies Xn → X in distribution.

Proof. Let t be a continuity point of FX . Fix ε > 0. Then

FXn
(t) = P(Xn ≤ t) ≤ P(X ≤ t+ ε) + P(|Xn −X| > ε).

Then, limn→∞ P(|Xn − X| > ε) = 0, so lim supFXn
(t) ≤ FX(t + ε). Then, since FX is continuous at

t, this implies that lim supFXn
(t) ≤ FX(t). A similar argument shows that lim inf FXn

(t) ≥ FX(t), so
limFXn

(t) = FX(t). The result follows.

Proposition 5.10. Xn → X in Lp implies Xn → X in Lr whenever p > r.

Proof. First, notice that f(x) = xp/r is convex. Thus, by Jensen’s inequality, E[|X − Xn|r]p/r ≤ E[|X −
Xn|p] → 0 as n → ∞, so E[|X −Xn|r]p/r → 0 as n → ∞ whence E[|X −Xn|r] → 0 as n → ∞.

Corollary 5.10.1. For any p ≥ 1, Xn → X in Lp implies Xn → X in L1.

5.1.2 Necessary and Sufficient Conditions

Definition 5.11 (Uniformly Integrable). A sequence of random variables {Xn}n≥1 is uniformly integrable
if for any ε > 0, there is some K > 0 such that for all n,∫

|Xn|>K

|Xn|dµ ≤ ε.

Proposition 5.12 (Alternate Definition of Uniform Integral). A sequence of random variables {Xn}n≥1 is
uniformly integrable if and only if supn E|Xn| < ∞ and, for all ε > 0, there exists δ > 0 such that µ(F ) < δ
implies

∫
F
|Xn|dµ < ∞ for all n.

Proof. Suppose {Xn} is uniformly integrable. Then, there exists K such that E(|Xn| | |Xn| > K) ≤ 1.
Then, for all n, E|Xn| =

∫
|Xn|≤K

|Xn|dµ +
∫
|Xn|>K

|Xn|dµ = K + 1, so supn E|Xn| < ∞. Then, fix ε > 0.

By definition, there exists K such that
∫
|Xn|>K

|Xn|dµ < ε
2 . Then, let δ = ε

2K . If µ(F ) < δ, then for any n,∫
F

|Xn|dµ =

∫
F∩{|Xn|≤K}

|Xn|dµ+

∫
F∩{|Xn|>K}

|Xn|dµ ≤ Kε

2K
+

ε

2
= ε.

Suppose supn
∫
|fn|dµ < ∞ and, for all ε, there exists δ such that µ(F ) < δ implies

∫
F
|Xn| < ε for all

n. Then, fix Xn is uniformly integrable. Then, for all K >
supn

∫
|fn|dµ
δ , Markov’s inequality implies that

µ{|fn| > K} ≤ K−1
∫
|fn|dµ ≤ K−1 supn

∫
|fn|dµ < δ, so that

∫
|fn|>α

|fn|dµ < ε, as desired.

Lemma 5.13 (Absolute Continuity of the Integral). Let f be an L1 function. Then, for any ε > 0, there
exists δ > 0 such that µ(A) < δ implies

∫
A
|f |dµ < ε.

Proof. First, notice that we may replace f by |f |; that is, it suffices to show the result for f nonnegative.
Suppose, for the sake of contradiction, there exists ε > 0 and a sequence of sets An so that µ(An) < 2−n

but
∫
An

fdµ ≥ ε. Consider gn(x) = f(x)χAn(x). Then gn(x) → 0 as n → ∞ except for points x which lie in
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infinite many Ans. But the collection of such points has measure 0, so gn(x) → 0 almost everywhere. Then,
set fn = f − gn, so fn ≥ 0 and fn → f almost everywhere. Then Fatou’s Lemma yields the contradiction∫

E

fdµ ≤ lim inf

∫
E

fndµ ≤
∫
E

fdµ− lim sup

∫
E

gndµ ≤
∫
E

fdµ− lim sup

∫
An

fndµ ≤
∫
E

fdµ− ε.

Corollary 5.13.1. Let {Xn}n≥1 be a sequence of random variables which is dominated by an L1 random
variable X. Then {Xn} is uniformly integrable.

Lemma 5.14. Suppose that 1 < p < ∞. Then, if supn ∥Xn∥Lp is finite, {Xn}n≥1 is uniformly integrable.

Proof. Fix R. Then, χ{|f |>R}|f(x)|Rp−1 ≤ |f(x)|p. Then, integrating,∫
|fn|>R

|fn|dµ ≤ R1−p sup
n

∫
|fn|pdµ

which tends to 0 as R → ∞. The result follows.

Proposition 5.15 (Vitali Covergence Theorem). Suppose {Xn}n≥1 is a sequence of Lp random variables
and X is a random variable. For any 1 ≤ p < ∞, Xn → X converges in probability and |Xn|p is uniformly
integrable if and only if Xn → X in Lp.

Proof. Assume that Xn → X in Lp. Then, Proposition 5.8 implies that Xn → X in probability. Simi-
larly, fix ε > 0. Then, select N such that

∫
|Xn − XN |pdµ < ε

2 when n ≥ N . Now, there exists δ > 0
such that µ(E) < δ implies

∫
E
|Xn|pdµ < ε

2 for n ≤ N . On the other hand, for n > N , if µ(E) < δ,∫
E
|Xn|pdµ ≤

∫
E
|Xn −XN |pdµ+

∫
E
|XN |pdµ < ε. Thus {Xp

n} is uniformly integrable.

Assume Xn → X in probability and |Xn|p is uniformly integrable. Fix ε > 0. Then let En = {|Xn −X| ≥(
ε
3

)1/p}. Choose δ > 0 such that
∫
E
Xp

ndµ < ε
3 and

∫
E
Xpdµ < ε

3 whenever µ(E) < δ. Then, take N such

that if n > N then µ(En) < δ. It follows that for n > N ,
∫
En

|Xn − X|pdµ < 2ε
3 . On the other hand,∫

Ec
n
|Xn −X|pdµ < ε

3 . Thus,
∫
|Xn −X|pdµ < ε, as desired.

Corollary 5.15.1. Suppose that {Xn} is a sequence of L1 random variables and X is a random variable.
Then Xn → X converges in probability and |Xn| is uniformly integrable if and only if Xn → X in L1.

Corollary 5.15.2. Suppose Xn → X in L1. Then Xn → X in Lp if and only if {Xp
n} is uniformly integrable.

Proof. Trivial.

Proposition 5.16. For any 1 ≤ p < ∞, if Xn → X a.e. and ∥Xn∥Lp → ∥X∥Lp , Xn → X in Lp.

Proof. Let Yn = |X|p + |Xn|p − |X −Xn|p. Then Yn is non-negative for each n and Yn → 2|X|p pointwise
almost everywhere. Thus, by the almost-everywhere version of Fatou’s Lemma,∫
E

2|X|pdµ ≤ lim inf
n→∞

∫
E

(|X|p + |Xn|p − |X −Xn|p)dµ =

∫
E

|X|p + lim inf
n→∞

∫
E

|Xn|p + lim inf
n→∞

∫
E

(−|X −Xn|p)dµ

=

∫
E

|X|p + lim inf
n→∞

∫
E

|Xn|p − lim sup
n→∞

∫
E

|X −Xn|pdµ

=

∫
E

2|X|p − lim sup
n→∞

∫
E

|X −Xn|pdµ

where the final equality follows from the assumption limn→∞
∫
E
|Xn|p →

∫
E
|X|p. Now, if we rearrange

the inequality given by the above calculation, we obtain lim supn→∞
∫
E
|X − Xn|pdµ ≤ 0. Of course,

lim infn→∞
∫
E
|X −Xn|pdµ ≥ 0, so indeed limn→∞

∫
E
|X −Xn|pdµ = 0 and Xn → X in Lp.

Corollary 5.16.1. If Xn → X a.e. and E[Xn] → E[X], then Xn → X in L1.
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5.1.3 Sufficient Conditions

Proposition 5.17. Xn
p−→ X implies that there exists a subsequence {nk} such that Xnk

→ X a.e.

Proof. By convergence in probability, there exists a subsequence {Xnk
}k≥1 such that for all k, P(|Xnk

−
Xnk+1

| > 2−k) ≤ 2−k. Thus, by the Borel-Cantelli Lemma, P(|Xnk
− Xnk+1

| > 2−k i.o.) = 0. Thus,
{Xnk

(ω)}k≥1 is a Cauchy sequence with probability 1. Then, define Y (ω) to be limk Xnk
(ω) if Xnk

(ω) is a
Cauchy sequence and 0 otherwise. Then Xnk

→ Y a.e. But then, Xnk
→ Y in probability by Proposition

5.7. But then, by Proposition 5.23, X = Y a.e., so that Xnk
→ X a.e.

Corollary 5.17.1. Suppose that {Xn}n≥1 is a non-decreasing sequence which converges to X in probability.
Then Xn → X a.e.

Proof. By the above proposition, there is a subsequence (Xnk
)k≥1 converging to X a.e. But then (Xn)

converges to X a.e. by monotonicity.

Proposition 5.18. Xn
L1

−→ X implies that E[Xn] → E[X].

Proof. This is immediate:

0 = lim
n→∞

∫
|Xn −X|dµ ≥ lim

n→∞

∣∣∣∣∫ (Xn −X)dµ

∣∣∣∣ = lim
n→∞

∣∣∣∣∫ Xndµ−
∫

Xdµ

∣∣∣∣ = lim
n→∞

|E[Xn]− E[X]|.

Proposition 5.19. Suppose {Xn} is a sequence of discrete and independent random variables. Then Xn →
X in probability implies that Xn → X a.e.

Proof. This follows from the Second Borel-Cantelli Lemma.

Lemma 5.20 (Ottoviani’s Inequality). Let X1, . . . , Xn be independent random variables. Let Sk,n =∑n
i=k+1 Xi and Sn = S0,n. Then, for all ε > 0,

min
1≤k≤n

P(|Sk,n| ≤ ε)P( max
1≤i≤n

|Si| > 2ε) ≤ P(|Sn| > ε).

Proof. Let Ak be the event that |Sk| is the first |Sj | strictly greater than 2ε. Then the event max1≤i≤n |Si| >
2ε is the disjoint union

⋃n
i=1 Ai. Then, since |Sk,n| is independent of |S1|, . . . , |Sk|,

P(Ak) min
1≤j≤n

P(|Sj,n| ≤ ε) ≤ P(Ak and |Sk,n| ≤ ε) = P(Ak and |Sk,n| ≤ ε) ≤ P(Ak and |Sn| > ε)

where the final step is because Ak and |Sk,n| ≤ ε implies |Sn| > ε. Then, sum over k to conclude.

Proposition 5.21. Suppose that {Xn} is a sequence of independent random variables. Then, if
∑

n Xn

converges in probability (i.e., if for any ε > 0, there exists N such that P(|Sm,n| > ε) ≤ ε when n > m > N),∑
n Xn converges almost surely.

Proof. First, notice that Sn doesn’t converge if and only if I = infm∈Z+ supk∈Z+ |Sm,m+k| doesn’t equal 0.
Thus, it suffices to show that I = 0 with probability 1. Let ε > 0. Then, by Ottoviani,

min
1≤k≤j

P
(
|S(m+k,m+j)| ≤

ε

2

)
P
(

max
1≤k≤j

|Sm,m+k| > ε

)
≤ P

(
|Sm,j+m| > ε

2

)
.

For any δ > 0, by convergence in probability, there existsNδ such that P(|SNδ+k,Nδ+j | > ε
2 ) ≤ δ for 0 ≤ k ≤ j.

Then P
(
|S(Nδ+k,Nδ+j)|

)
≥ 1− δ and P

(
|SNδ,Nδ+j | > ε

2

)
≤ δ, so P (max1≤k≤j |SNδ,Nδ+k| > ε) ≤ δ

1−δ . Then,

P
(

inf
m∈Z+

sup
k∈Z+

|Sm,m+k| > ε

)
≤ P

(
max
1≤k≤j

|SNδ,Nδ+k| > ε

)
≤ δ

1− δ

Then, since δ is arbitrary, by driving δ → 0 we find that P(infm∈Z+ supk∈Z+ |Sm,m+k| > ε) = 0 for any ε > 0.
Therefore, taking ε → 0, P(infm∈Z+ supk∈Z+ |Sm,m+k| > 0) = 0 and the result follows.

29



Proposition 5.22. Suppose that Xn → X a.e. Also suppose that there exists an Lp random variable Y such
that Xn ≤ Y for all n for some 1 ≤ p ≤ ∞. Then Xn → X in Lp.

Proof. This follows immediately from the dominated convergence theorem.

Corollary 5.22.1. Suppose that Xn → X a.e. Also suppose that there exists an L1 random variable Y such
that Xn ≤ Y for all n. Then E[Xn] → E[X].

5.1.4 Additional Notes

Proposition 5.23. The following hold:

1. Suppose that Xn → X a.e. and Xn → Y a.e. Then X = Y a.e.

2. Suppose that Xn → X in probability and Xn → Y in probability. Then X = Y a.e.

3. Suppose that Xn → X in Lp and Xn → Y in Lp. Then X = Y a.e.

4. Suppose that Xn → X in L1 and Xn → Y in L1. Then X = Y a.e.

Proof. (1) is trivial, and (4) follows from (3). Furthermore, (3) follows from the fact that Xn → X and
Xn → Y in Lp implies that

∫
|X − Y |pdµ = 0 whence |X − Y |p = 0 a.e. whence X = Y a.e. Finally, (2)

follows from the fact that there exists a subsequence {Xnk
} of {Xn} converging to X a.e. and converging to

Y in probability, and then a subsequence {Xnkm
} of {Xnk

} converging to X and Y a.e., so X = Y a.e.

Finally, the statements about convergence in distribution shall be proven in the following subsections.

5.2 The Weak Law of Large Numbers

Theorem 5.24 (Quantitative Weak Law of Large Numbers). If X1, X2, . . . , Xn be L2 random variables
defined on the same probability space. Let µi = E[Xi] and σij = Cov(Xi, Xj). Then, for any ε > 0,

P

(∣∣∣∣∣ 1n
n∑

i=1

Xi −
1

n

n∑
i=1

µi

∣∣∣∣∣ ≥ ε

)
≤ 1

ε2n2

n∑
i,j=1

σij .

Proof. Apply Chebychev’s inequality to the variance of a sum of random variables.

Corollary 5.24.1 (L2 Weak Law of Large Numbers). If {Xn}∞n=1 is a sequence of i.i.d. with common mean

µ and uniformly bounded finite second moment, then
∑n

i=1 Xi

n converges in probability to µ as n → ∞.

5.3 The Strong Law of Large Numbers

Theorem 5.25 (Strong Law of Large Numbers). Let {Xn}n≥1 be a sequence of pairwise independent and
identically distributed random variables with E[X1] < ∞. Then 1

n

∑n
i=1 Xi tends to E[X1] almost surely as

n → ∞.

Proof. First, notice that by splitting into positive and negative parts, we may assume that the Xi are non-
negative. Then, define Yi = Xi1{Xi<i}. Then

∑∞
i=1 P(Xi ̸= Yi) =

∑∞
i=1 P(X ≤ i) =

∑∞
i=1 P(Xi ≥ i) ≤

E[X1] < ∞. Therefore, by the first Borel-Cantelli Lemma, P(Xi ̸= Yi i.o.) = 0. Yet if Xi ̸= Yi finitely often,
1
n

∑n
i=1 Xi − 1

n

∑n
i=1 Yi → 0 as n → ∞. Next, notice that |E[Yi] − E[X1]| = |E[Yi −X1]| ≤ E[|Yi −X1|] =

E[|Yi −Xi|] ≤ E[Xi1{Xi>i}] = E[X11{X1≥i}]. Then, notice that as i → ∞, then X11{Xi>i} → 0 by Markov’s
inequality as E[X1] < ∞. Thus, by the Dominated Convergence Theorem, E[X11{Xi≥i}) → 0 as i → ∞.

Thus, E[Yi] → E[X1] as i → ∞, so that 1
n

∑n
i=1 E[Yi] → E[X1] as n → ∞.

Thus, since 1
n

∑n
i=1 Xi − 1

n

∑n
i=1 Yi → 0 as n → ∞ almost surely, and 1

n

∑n
i=1 E[Yi] → E[X1] as n → ∞, it

suffices to show that 1
n

∑n
i=1(Yi − E[Yi]) → 0 almost surely. Let Zn = 1

n

∑n
i=1(Yi − E[Yi]). For any n > 1,

let kn = [αn]. We show that for any α > 1, Zkn
→ 0 almost surely.
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Fix ε > 0. Then, by the Weak Law of Large Numbers, P(|Zkn | > ε) ≤ 1
ε2k2

n

∑n
i=1

∑kn

i=1 Var(Yi). Thus,∑∞
n=1 P(|Zkn

| > ε) ≤ 1
ε2

∑∞
i=1 Var(Yi)

∑
n|kn≥i

1
k2
n
. Yet, there exists some β with kn+1/kn ≥ β for all suffi-

ciently large n, so that
∑

n|kn≥i
1
k2
n
≤ 1

i2

∑∞
n=0 β

−n ≤ C
i2 . Then, by increasing C if necessary, this inequality

holds for all n.

Thus, by the monotone convergence theorem,

∞∑
n=1

P(|Zkn
| > ε) ≤ C

ε2

∞∑
i=1

Var(Yi)

i2
≤ C

ε2

∞∑
i=1

E[Yi]
2

i2
=

C

ε2

∞∑
i=1

E[X2
1 | X1 < i]

i2
≤ C

ε2
E

[
X2

1

∑
i>X1

1

i2

]
≤ C ′

ε2
E[X1] < ∞.

Hence by the first Borel-Cantelli Lemma, P(|Zkn
|) > ε i.o.) = 0. Thus, Zkn

→ 0 a.s. as n → ∞.

Now, our goal is to show that Zn → 0 a.s. Let Tn = Y1 + · · ·+ Yn, and take kn < m ≤ kn+1. Then,

kn
kn+1

Tkn

kn
=

Tkn

kn+1
≤ Tm

m
≤

Tkn+1

kn
=

Tkn+1

kn+1

kn+1

kn
.

But then, taking m → ∞, since kn+1/kn → α and Tkn
/kn → µ almost surely, the above imply that

µ

α
≤ lim inf

m→∞

Tm

m
≤ lim sup

m→∞

Tm

m
≤ αµ

for any α > 1, which is sufficient to establish the desired result.

5.4 Prerequisites for the Central Limit Theorem

This section prepares us to prove the Central Limit Theorem, which is the following result:

Theorem 5.26 (Central Limit Theorem). Let X1, X2, . . . be i.i.d. random variables with mean 0 and
variance 1. Let Sn = X1 + · · ·+Xn. Then Sn√

n
converges in distribution to N (0, 1).

For, this we need some preliminary material.

Definition 5.27 (Tight Family). Let {Xi}i∈I be any collection of random variables. Then, {Xi}i∈I is a
tight family if for all ε > 0, there exists K > 0 such that P(|Xi| > K) ≤ ε for all i ∈ I.

Proposition 5.28. If Xn
d→ X in distribution, then {Xn}n≥1 is tight.

Theorem 5.29 (Helly’s Selection Theorem). If {Xn}n≥1 is a tight family, then there is a subsequence
{Xnk

}k≥1 that converges in distribution.

Proof. Let Fn be the c.d.f. of Xn. By the standard diagonal argument, there is a subsequence {nk}k≥1 such
that F∗(q) = limk→∞ Fnk

(q) for every rational q. Then, for every x ∈ R, define F (x) = infq∈Q,q>x F∗(q).
Then, F is non-decreasing and it can be straightforwardly shown that it satisfies both lim supk→∞ Fnk

(x) ≤
F (x) and lim infk→∞ Fnk

(x) ≥ F (x), so limk→∞ Fnk
(x) = F (x) whenever x is a continuity point of F .

Theorem 5.30. Xn converges to X in distribution if and only if E[f(Xn)] converges to E[f(X)] for every
bounded continuous function f : R → R.

Proof. Suppose that Xn
d→ X. Then, take any f : R → R bounded and continuous. Then {Xn}n≥1 is tight,

so that there exists K > 0 such that for all n, P(|Xn| > K) < ε and P(|X| > K) < ε. Since f is bounded,
there exists M > 0 such that |f(x)| ≤ M for all x. Since f is continuous, it is uniformly continuous in
[−K,K]. Thus, there exists some δ > 0 such that x, y ∈ [−K,K] with |x− y| < δ implies |f(x)− f(y)| < ε.
Now, we may choose −K = x1 ≤ x2 ≤ · · · ≤ xm = K such that each xi is a continuity point of FX and
xi+1 − xi ≤ δ for each i.
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Let g(x) = 0 if |x| > K and f(xi) if x ∈ (xi−1, xi]. Then |Ef(Xn) − Eg(Xn)| = |E[f(Xn) − g(Xn)]| ≤
E|f(Xn)− g(Xn)|. Now, if Xn ∈ (−K,K], this quantity is at most ε, and if Xn ̸∈ (−K,K), this is bounded
above by M . Thus, E|f(Xn) − g(Xn)| ≤ MP(Xn ̸∈ (−K,K]) + εP(Xn ∈ (−K,K]) = Mε + ε = (M + 1)ε.
By the same argument, |Ef(X) − Eg(X)| ≤ (M + 1)ε. Yet, Eg(Xn) =

∑m
i=1 f(yi)P(yi < Xn ≤ yi+1) =∑m

i=1 f(yi)(Fn(yi) − Fn(yi−1)) →
∑m

i=1 f(yi)(F (yi) − F (yi−1)) = E[g(x)]. Thus, lim supn→∞ |Ef(Xn) −
Ef(X)| ≤ 2(M + 1)ε, and since this holds for any ε, we obtain lim supn→∞ |Ef(Xn)− Ef(X)| = 0 and the
result follows.

Then, suppose that E[f(Xn)] → E[f(X)] for any bounded continuous function f , and take a continuous
point t of FX . Then take ε > 0. Let fε be the function that is 1 below t, 0 above t + ε, and goes down
linearly from 1 to 0 in the interval [t, t + ε]. Then lim supn→∞ FXn

(t) ≤ lim supn→∞ E[f(Xn)] = Ef(X) ≤
FX(t + ε). Since FX is right-continuous, taking ε → 0 yields lim supn→∞ FXn

(t) ≤ FX(t). Similarly,
lim infn→∞ FXn(t) ≥ FX(t). Thus, limn→∞ FXn(t) = FX(t) whenever t is a continuity point of FX , so that
Xn → X in distribution.

Corollary 5.30.1. Two random variables X and Y have the same law if and only if E[f(X)] = E[f(Y )] for
all bounded continuous f .

Corollary 5.30.2. If {Xn}∞n=1 is a sequence of random variables converging in distribution to a random

variable X. Then for any continuous f : R → R, f(Xn)
d→ f(X).

Theorem 5.31 (Slutsky’s Theorem). If Xn → c ∈ R in probability and Yn → Y in distribution, show that
XnYn → cY and Xn + Yn → c+ Y in distribution.

Proof. Let F be the c.d.f. of Y + c and t be a continuity point of F . Fix ε > 0. Then, if Xn + Yn ≤ t,
either Yn + c ≤ t + ε or Xn − c < −ε. Thus, the union bound yields P(Xn + Yn ≤ t) ≤ P(Yn + c ≤
t+ε)+P(Xn−c < −ε). Then, if t+ε is also a continuity point of F , lim supn→∞ P(Yn+c ≤ t+ε) = F (t+ε),
and lim supn→∞ P(Xn − c < −ε) = 0. Thus, lim supn→∞ P(Xn + Yn ≤ t) ≤ F (t+ ε).

Similarly, if Yn+c ≤ t−ε, either Xn+Yn ≤ t or Xn−c > ε. Thus, the union bound yields P(Yn+c ≤ t−ε) ≤
P(Xn+Yn ≤ t)+P(Xn−c > ε). Then, if t−ε is a continuity point of F , lim infn→∞ P(Yn+c ≤ t−ε) = F (t−ε),
and lim infn→∞ P(Xn − c > ε) = 0. Thus, lim infn→∞ P(Xn + Yn ≤ t) ≥ F (t− ε).

Now, since F has only countably many points of discontinuity, there exists a sequence {εj} → 0 such that
t+ εi and t− εi are continuity points of F for each i. Furthermore, since F is continuous at t,

F (t) = lim
j→∞

F (t+ εj) ≥ lim sup
n→∞

P(Xn + Yn ≤ t) ≥ lim inf
n→∞

P(Xn + Yn ≤ t) ≥ lim
j→∞

F (t− εj) = F (t)

Thus, limn→∞ P(Xn + Yn ≤ t) = F (t), and the result follows.

Suppose c > 0. Let F be the c.d.f of cY . Fix ε > 1. Then, if XnYn ≤ t, either cYn ≤ εt or Xn

c < 1
ε . Thus,

P(XnYn ≤ t) ≤ P(cYn ≤ εt) + P(Xn

c < 1
ε ). Then, if tε is a continuity point of F , lim supn→∞ P(cYn ≤ tε) =

F (tε), and lim supn→∞ P(Xn

c < 1
ε ) = 0. Thus, lim supn→∞ P(XnYn ≤ t) ≤ F (t+ε). Similarly, if cYn ≤ t

ε , ei-

ther XnYn ≤ t or Xn

c > ε. Thus, P(cYn ≤ t
ε ) ≤ P(XnYn ≤ t)+P(Xn

c > ε). Then, if t
ε is a continuity point of

F , lim infn→∞ P(cYn ≤ t
ε ) = F ( tε ), and lim infn→∞ P(Xn

c > ε) = 0. Thus, lim infn→∞ P(XnYn ≤ t) ≥ F ( tε ).

Now, since F has only countably many points of discontinuity, there exists a sequence {εj} → 1 such that
tεi and

t
εi

are continuity points of F for each i. Furthermore, since F is continuous at t,

F (t) = lim
j→∞

F (tεj) ≥ lim sup
n→∞

P(XnYn ≤ t) ≥ lim inf
n→∞

P(XnYn ≤ t) ≥ lim
j→∞

F

(
t

εj

)
= F (t)

Thus, limn→∞ P(XnYn ≤ t) = F (t), and the result follows. Similarly, for the case c < 0, notice that
−Xn → −c in probability, so that −(XnYn) → −cY in distribution by the above work, which immediately
implies that XnYn → cY , as desired.
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All that remains is to show that if Xn → 0 in probability and Yn → Y in distribution, then XnYn → 0 in
distribution. Fix t > 0. Then, |XnYn| > t implies that either |Yn| > t

ε or |Xn| > ε. Thus, P(|XnYn| > t) ≤
P(|Yn| > t

ε ) +P(|Xn| > ε). Now, if t
ε and − t

ε are both continuity points of the c.d.f. of Y , limn→∞ P(|Yn| >
t
ε ) = P(|Y | > t

ε ). Yet as ε → 0, P(|Y | > t
ε ) → 0. Since F has only countably many points of discontinuity,

there exists a decreasing sequence {εj} → 0 such that t
εi

and tεi are continuity points of F for each i. Thus,

0 ≤ lim
n→∞

P(|XnYn| > t) ≤ lim
j→∞

lim
n→∞

(
P
(
|Yn| >

t

εj

)
+ P(|Xn| > εj)

)
≤ lim

j→∞
P
(
|Y | > t

εj

)
= 0.

Thus, P(|XnYn| > t) = 0 for any t > 0. Therefore, P(|XnYn| ≤ t) = P(XnYn ≤ t) − P(XnYn < −t) = 1,
whence P(XnYn ≤ t) = 1 and P(XnYn < −t) for any t > 0. That is, P(XnYn ≤ t) is equal to 0 if t < 0 and
1 if t > 0, and therefore XnYn converges in distribution to the random variable 0.

Theorem 5.32. Let X be a random variable with characteristic function ϕ. Then, for each θ > 0, define
fθ(x) =

1
2π

∫∞
−∞ e−itx−θt2ϕ(t)dt. Then, for any bounded continuous g : R → R, E[g(X)) = limθ→0

∫∞
−∞ g(x)fθ(x)dx.

Proof. Let µ be the law of X, so ϕ(t) =
∫∞
−∞ eitydµ(y). Then, applying Fubini’s theorem, fθ(x) =

1
2π

∫∞
−∞

∫∞
−∞ ei(y−x)t−θt2dtdµ(y). Yet

∫∞
−∞ ei(y−x)t−θt2dt =

√
π
θ

∫∞
−∞ ei(2θ)

−1/2(y−x)s e−s2/2
√
2π

ds =
√

π
θ e

−(y−x)2/4θ.

Thus fθ(x) =
∫∞
−∞

e−(y−x)2/4θ
√
4πθ

dµ(y). Then fθ(x) is the p.d.f. of X + Zθ, where Zθ = N(0, 2θ), so that∫∞
−∞ g(x)fθ(x)dx = E[g(X + Zθ)]. But Zθ → 0 in probability as θ to 0, so X + Zθ → X in distribution by
Slutksy’s theorem, and E[g(X + Zθ)] → E[g(X)] as θ → 0 by the previous theorem.

Corollary 5.32.1. Two random variables X and Y have the same law if and only if they have the same
characteristic function.

Corollary 5.32.2. Let X be a random variable with characteristic function ϕ. Suppose that∫ ∞

−∞
|ϕ(t)|dt < ∞.

Then X has a probability density function f given by f(x) = 1
2π

∫∞
−∞ e−itxϕ(t)dt.

Proof. Now, recall that fθ is the p.d.f. of X + Zθ, where Zθ ∼ N(0, 2θ). Then, if ϕ is integrable,
the dominated convergence theorem shows that f(x) = limθ→0 fθ(x). Furthermore, by integrability of
ϕ, |fθ(x)| ≤ 1

2π

∫∞
−∞ |ϕ(t)|dt. Thus, by the dominated convergence theorem, for −∞ < a ≤ b < ∞,∫ b

a
f(x)dx = limθ→0

∫ b

a
fθ(x)dx. Therefore, by Slutsky’s Theorem, if a and b are continuity points of the

c.d.f. of X, P(a ≤ X ≤ b) =
∫ b

a
f(x)dx.

Theorem 5.33. Let X be an integer-valued random variable with characteristic function ϕ. Then for any
x ∈ Z, P(X = x) = 1

2π

∫ π

−π
e−itxϕ(t)dt.

Proof. If µ is the law of X, then by Fubini’s Theorem,

1

2π

∫ π

−π

e−itxdt =
1

2π

∫ π

−π

∫ ∞

−∞
e−itxeitydµ(y)dt =

1

2π

∫ ∞

−∞

∫ π

−π

eit(y−x)dtdµ(y)

=
∑
y∈Z

P(X = y)

(
1

2π

∫ π

−π

eit(y−x)dt

)
= P(X = x).

Theorem 5.34 (Levy’s Continuity Theorem). A sequence of random variables {Xn}n≥1 converges in dis-
tribution to a random variable X if and only if the sequence of characteristic functions {ϕXn

}n≥1 converges
to the characteristic function ϕX pointwise.
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Proof. One direction follows immediately from our work earlier in this section. For the other, suppose
ϕXn(t) → ϕX(t) for every t. Take any ε > 0. Then, there exists a such that |ϕX(s) − 1| ≤ ε/2 whenever
|s| ≤ a. Thus, 1

a

∫ a

−a
(1 − ϕX(s))ds ≤ ε. Thus, by the dominated convergence theorem, limn→∞

1
a

∫ a

−a
(1 −

ϕXn
(s))ds = 1

a

∫ a

−a
(1 − ϕX(s))ds ≤ ε. Let t = 2/a. Then, lim supn→∞ P(|Xn| ≥ t) ≤ ε, so that

P(|Xn| ≥ t) ≤ 2ε for all large enough n. Then, increasing t to T as necessary, we may assume that
there exists T such that P(|Xn| ≥ T ) ≤ 2ε, so that {Xn} is tight.

Then, suppose that Xn ̸ d→ X; then there exists a bounded continuous function f with E[f(Xn)] ̸→ E[f(X)].
But then, passing to a subsequence if necessary, we find that there exists ε > 0 such that |E[f(Xn)] −
E[f(X)]| ≥ ε for all n. Then, by tightness, there is a subsequence {Xnk

} that converges in distribution to a
limit Y . But then Ef(Xnk

) → Ef(Y ) whence |Ef(Y )− Ef(X)| ≥ ε. But by the first direction and the fact
that ϕXn

→ ϕX pointwise, ϕY = ϕX . But then Y and X have the same law, yielding a contradiction with
the above work.

5.5 The Central Limit Theorem

In this section, we will be proving various forms of the Central Limit Theorem. We begin with the classical
Central Limit Theorem, which is for i.i.d. random sums.

Theorem 5.35. Let X1, X2, . . . be i.i.d. random variables with mean µ and variance σ2.Then, the random
variable ∑n

i=1 Xi − nµ√
nσ

converges weakly to the standard Gaussian distribution as n → ∞.

Proof. First, we need the following two lemmas:

Lemma 5.36. For any x ∈ R, ∣∣∣∣eix − 1− ix+
x2

2

∣∣∣∣ ≤ min

{
x2,

|x|3

6

}
.

Proof. Now, by Taylor expansion,
∣∣∣eix −

∑k
j=0

(ix)j

j!

∣∣∣ ≤ |x|k+1

(k+1)! . Thus,
∣∣∣eix − 1− ix+ x2

2

∣∣∣ ≤ |x|3
6 . Yet also∣∣∣eix − 1− ix+ x2

2

∣∣∣ ≤ ∣∣eix − 1− ix
∣∣+ x2

2 ≤ x2

2 + x2

2 = x2. The result follows.

Lemma 5.37. Let a1, . . . , an and b1, . . . , bn be complex numbers such that |ai| ≤ 1 and |bi| ≤ 1. Then,
|
∏n

i=1 ai −
∏n

i=1 bi| ≤
∑n

i=1 |ai − bi|.

Proof.∣∣∣∣∣
n∏

i=1

ai −
n∏

i=1

bi

∣∣∣∣∣ =
∣∣∣∣∣

n∑
i=1

a1 · · · ai−1bi · · · bn − a1 · · · aibi+1 · · · bn

∣∣∣∣∣ ≤
n∑

i=1

|a1 · · · ai−1bi · · · bn − a1 · · · aibi+1 · · · bn|

=

n∑
i=1

|a1 · · · ai−1(bi − ai)bi+1 · · · bn| ≤
n∑

i=1

|bi − ai| .

First, notice that by replacing Xi by (Xi − µ)/σ, we may assume that µ = 0 and σ = 1. Then, let Sn =√
n
∑n

i=1 Xi. Then, take any t ∈ R; it suffices, by Levy’s continuity theorem, to show that ϕSn
(t) → e−t2/2

as n → ∞. Yet because the Xi are i.i.d., ϕSn
(t) =

∏n
i=1 ϕXi

(t/
√
n) = (ϕX1

(t/
√
n))n. Thus, by Lemma

8.10.4, when n is large enough that t2 ≤ 2n,∣∣∣∣ϕSn(t)−
(
1− t2

2n

)n∣∣∣∣ ≤ n

∣∣∣∣ϕX1(t/
√
n)−

(
1− t2

2n

)∣∣∣∣ .
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Now, it suffices to show that the right-hand side tends to zero as n → ∞. Yet

n

∣∣∣∣ϕX1
(t/

√
n)−

(
1− t2

2n

)∣∣∣∣ = n

∣∣∣∣E(eitX1/
√
n − 1− itX1√

n
+

t2X2
1

2n

)∣∣∣∣ ≤ Emin

{
t2X2

1 ,
|t|3|X1|3

6
√
n

}
→ 0

by the finiteness of E2
1 and the dominated convergence theorem.

Following is a result which can be applied in combination with the Central Limit Theorem to yield useful
results:

Theorem 5.38. Suppose that X1, X2, . . . is a sequence of random variables (not necessarily independent),
and µ ∈ R and σ > 0 are constants such that

√
n(Xn − µ) converges in distribution to N(0, σ2). Let

f : R → R be a differentiable function such that f ′ is continuous at µ. Then,
√
n(f(Xn) − f(µ)) converges

in distribution to N(0, f ′(µ)2σ2).

Proof. First, let Yn = Xn−µ
σ , so that

√
nYn converges in distribution to N(0, 1) by Slutsky’s Theorem.

Secondly, let g(x) = f(σx+µ)−f(µ)
σ , so that

√
ng(Yn) =

√
n · f(σYn + µ)− f(µ)

σ
=

√
n · f(Xn)− f(µ)

σ

converges in distribution to N(0, f ′(0)2) if and only if
√
n(f(Xn) − f(µ)) converges in distribution to

N(0, f ′(µ)2σ2) by Slutsky’s Theorem. Thus, we may assume that µ = f(µ) = 0 and σ = 1.

Now, since f is differentiable and such that f(0) = 0, by Taylor’s Theorem, there exists h(x) such that
limx→0 h(x) = 0 and f(x) = f ′(0)x + h(x)x2. Then, f(Xn) = f ′(0)Xn + h(Xn)X

2
n, so that

√
nf(Xn) =

f ′(0)(
√
nXn) + (

√
nXn)h(Xn)Xn. Now, by assumption,

√
nXn converges in distribution to N(0, 1). Yet

since 1√
n
converges in probability to 0, by Slutsky’s theorem this implies that Xn converges in distribution

to 0. Yet then, Xn converges in probability to 0.

Then, since limx→0 h(x) = 0, h(Xn) converges in probability to 0. Then, since h(Xn)
p→ 0 and Xn

p→ 0,

clearly h(Xn)Xn
p→ 0. But then, by Slutsky’s Theorem, (

√
nXn)h(Xn)Xn

d→ 0, whence (
√
nXn)h(Xn)Xn

p→
0. Furthermore, f ′(0)

√
nXn converges in distribution to f ′(0)N(0, 1) = N(0, f ′(0)2) by Slutsky’s Theorem,

so by a final application of Slutsky’s Theorem,
√
nf(Xn) = f ′(0)(

√
nXn) + (

√
nXn)h(Xn)Xn converges in

distribution to N(0, f ′(0)2), which is the desired result.

Following is an example calculation using this result:

Example 5.39. A p-coin is a coin that has probability p of turning up heads. Let Sn be the number of
heads in n tosses of a p-coin. Then

√
Sn −√

np converges in distribution as n → ∞ to N(0, 1−p
4 ).

Proof. Let X1, X2, . . . be i.i.d. random variables taking the value 0 with probability 1 − p and the value 1
with probability p, so that Sn =

∑n
i=1 Xi. Then Xi has mean p and variance p(1 − p). Thus, by CLT for

i.i.d. sums, Sn−np√
np(1−p)

converges in distribution to N(0, 1). But then
√
n

(
Sn
n −p√
p(1−p)

)
converges in distribution

to N(0, 1), so that
√
n
(
Sn

n − p
) d→ N(0, p(1− p)).

Now, p is the mean of Sn

n . Thus, defining f(x) =
√
x, and noticing that f is differentiable with continuous

derivative if p = (0, 1), we can apply the previous problem to see that
√
n

(√
Sn

n −√
p

)
converges in

distribution to N(0, p(1− p)f ′(p)2). Now, f ′(p) = 1
2
√
p , so f ′(p)2 = 1

4p . Thus,

√
n

(√
Sn

n
−√

p

)
=
√
Sn −√

np
d→ N

(
0,

1− p

4

)
.
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We also mention two other forms of the Central Limit Theorem.

Theorem 5.40 (Lindeberg-Feller CLT). Let {kn}n≥1 be a sequence of positive integers increasing to infinity.
For each n, let {Xn,i}1≤i≤kn

is a collection of independent random variables. Let µn,i = E[Xn,i], σ2
n,i =

Var(Xn,i), and

s2n =

kn∑
i=1

σ2
n,i.

Suppose that for any ε > 0, limn→∞
1
s2n
E[(Xn,i−µn,i)

2 | |Xn,i−µn,i| ≥ εsn] = 0. Then, the random variable∑kn
i=1(Xn,i−µn,i)

sn
converges in distribution to the standard Gaussian law as n → ∞.

Proof. Similar to the above proof with only a few details changed.

Theorem 5.41 (Lyapunov CLT). Let {Xn}∞n=1 be a sequence of independent random variables. Let µi =
E[Xi], σ

2
i = Var(Xi), and s2n =

∑n
i=1 σ

2
i . If, for some δ > 0,

lim
s2+δ
n

n∑
i=1

E|Xi − µi|2+δ = 0

then the random variable
∑n

i=1(Xi−µi)

sn
converges weakly to the standard Gaussian distribution as n → ∞.

Proof. This follows from letting kn = n and Xn,i = Xi. Then, the Lyapunov condition will yield the desired
result.
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